
2/26/07 Lecture 13 outline

• Last time: Renormalized and bare Greens functions.

Γ̃
(n)
B (p1, . . . pn; λB, mB, ε) = Z

−n/2
φ Γ̃

(n)
R (p1, . . . pn; λR, mR, µ, ε).

For fixed physics, the LHS is some fixed quantity. The RHS depends on the renormal-

ization point µ and the scheme. The LHS does not! This leads to what is known as the

renormalization group equations, which state how the renormalized quantities must vary

with µ. Rewrite above as

Z
n/2
φ Γ̃

(n)
B (p1, . . . pn; λB, mB, ε) = Γ̃

(n)
R (p1, . . . pn; λR, mR, µ, ε).

Now the RHS is finite, so the LHS must be too. So we can take ε → 0 without a problem.

• Before getting intro the renormalization group, let’s take a little detour. Recall that

∫
d4xeipx〈Ω|Tφ(x)φ(0)|Ω〉 =

i

p2 − m2 − Π′(p2) + iε
.

By inserting a complete set of states,

1 = |Ω〉〈Ω| +
∑

λ

∫
d3p

(2π)2
1

2Ep
|p〉〈p|

the LHS can be written as

∫
d4xeipx〈Ω|Tφ(x)φ(0)|Ω〉 =

∫
∞

0

dM2

2π
ρ(M2)

i

p2 − M2 + iε
,

where

ρ(M2) =
∑

λ

2πδ(M2 − m2
λ)|〈Ω|φ(0)|λ〉|2 > 0

is the Kallen-Lehmann spectral density. Find ρ(M2) = 2πδ(M2 − m2)Z for M2 � 4m2.

For M2 slightly below 4m2 there are new delta functions, at the bound states. Starting at

4m2, ρ(M2) is some positive function. This implies that

i

p2 − m2 − Π′(p2) − iε
=

iZ

p2 − m2 − iε
+

∫
∞

∼4m2

dM2

2π
ρ(M2)

i

p2 − M2 + iε
.

The LHS has a simple pole, with residue iZ, at p2 − m2. Then there can be a few more

simple poles, for p2 slightly below 4m2.
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Starting at p2 = 4m2, there is a branch cut, corresponding to producing two more more

free particles. Note M(s) = M(s∗)∗ implies that the real part of M is continuous across

the cut, but the imaginary part can be discontinuous: ImM(s + iε) = −ImM(s − iε).

We’ll return to this shortly.

The above equality, back in position space and taking ∂/∂t, leads to the equal time

commutators, [φ(~x, t), φ̇(~y, t)] = iδ(3)(~x− ~y), matching the coefficient of the delta function

on the two sides of the resulting equation gives

1 = Z +

∫
∞

∼4m2

dM2

2π
ρ(M2) ≥ Z.

So Z ≤ 1, with Z = 1 iff the theory is a free field theory. Let’s compare with what we

found last lecture,

δ
(2)
Z = −

λ2

12(16π2)2
1

ε
.

Looks good and negative (for ε > 0).

• LSZ (Lehmann, Symanzik, Zimmermann ’55). Long discussion (see e.g. Peskin).

Let’s just state the result: the S-matrix element for m incoming particles and n outgoing

ones is given by

〈p1 . . .pn|S|k1 . . .km〉 = lim
o.s

n∏
i=1

(p2
i − m2

i )Z
−1/2
i

m∏
j=1

(k2
j − m2

j )Z
−1/2
j G̃n+m(−pi, ki).

Here G̃n+m is the full n + m point Green’s function, including disconnected diagrams etc.

The limit is where we take the external particles on shell. In this limit, the p2
i − m2

i and

k2
j − m2

j prefactors all go to zero. These zeros kill everything on the RHS except for the

connected contributions to G̃. Accounting for the fact that we amputate the external

propagators, which go like iZi(p
2
i − m2

i )
−1, the above becomes

〈p1 . . .pn|S|k1 . . .km〉 = Z(n+m)/2G̃n+m
conn,B(−pi, ki) = G̃n+m

conn,R(−pi, kj)

This is the promised general relation between the connected Greens functions (and in

particular Γ̃) and S-matrix elements.
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