2/26/07 Lecture 13 outline

• Last time: Renormalized and bare Greens functions.

$$
\tilde{\Gamma}_B^{(n)}(p_1,\ldots p_n; \lambda_B, m_B, \epsilon) = Z_{\phi}^{-n/2} \tilde{\Gamma}_R^{(n)}(p_1,\ldots p_n; \lambda_R, m_R, \mu, \epsilon).
$$

For fixed physics, the LHS is some fixed quantity. The RHS depends on the renormalization point μ and the scheme. The LHS does not! This leads to what is known as the renormalization group equations, which state how the renormalized quantities must vary with μ . Rewrite above as

$$
Z_{\phi}^{n/2} \tilde{\Gamma}_{B}^{(n)}(p_1,\ldots p_n; \lambda_B, m_B, \epsilon) = \tilde{\Gamma}_{R}^{(n)}(p_1,\ldots p_n; \lambda_R, m_R, \mu, \epsilon).
$$

Now the RHS is finite, so the LHS must be too. So we can take $\epsilon \to 0$ without a problem.

• Before getting intro the renormalization group, let's take a little detour. Recall that

$$
\int d^4x e^{ipx} \langle \Omega | T\phi(x)\phi(0) | \Omega \rangle = \frac{i}{p^2 - m^2 - \Pi'(p^2) + i\epsilon}.
$$

By inserting a complete set of states,

$$
1 = |\Omega\rangle\langle\Omega| + \sum_{\lambda} \int \frac{d^3p}{(2\pi)^2} \frac{1}{2E_p} |p\rangle\langle p|
$$

the LHS can be written as

$$
\int d^4x e^{ipx} \langle \Omega | T\phi(x)\phi(0) | \Omega \rangle = \int_0^\infty \frac{dM^2}{2\pi} \rho(M^2) \frac{i}{p^2 - M^2 + i\epsilon},
$$

where

$$
\rho(M^2) = \sum_{\lambda} 2\pi \delta(M^2-m_{\lambda}^2) |\langle \Omega | \phi(0) | \lambda \rangle|^2 > 0
$$

is the Kallen-Lehmann spectral density. Find $\rho(M^2) = 2\pi\delta(M^2 - m^2)Z$ for $M^2 \ll 4m^2$. For M^2 slightly below $4m^2$ there are new delta functions, at the bound states. Starting at $4m^2$, $\rho(M^2)$ is some positive function. This implies that

$$
\frac{i}{p^2 - m^2 - \Pi'(p^2) - i\epsilon} = \frac{iZ}{p^2 - m^2 - i\epsilon} + \int_{\sim 4m^2}^{\infty} \frac{dM^2}{2\pi} \rho(M^2) \frac{i}{p^2 - M^2 + i\epsilon}.
$$

The LHS has a simple pole, with residue iZ , at $p^2 - m^2$. Then there can be a few more simple poles, for p^2 slightly below $4m^2$.

Starting at $p^2 = 4m^2$, there is a branch cut, corresponding to producing two more more free particles. Note $\mathcal{M}(s) = \mathcal{M}(s^*)^*$ implies that the real part of $\mathcal M$ is continuous across the cut, but the imaginary part can be discontinuous: $Im \mathcal{M}(s + i\epsilon) = -Im \mathcal{M}(s - i\epsilon)$. We'll return to this shortly.

The above equality, back in position space and taking $\partial/\partial t$, leads to the equal time commutators, $[\phi(\vec{x}, t), \dot{\phi}(\vec{y}, t)] = i\delta^{(3)}(\vec{x} - \vec{y})$, matching the coefficient of the delta function on the two sides of the resulting equation gives

$$
1 = Z + \int_{\sim 4m^2}^{\infty} \frac{dM^2}{2\pi} \rho(M^2) \ge Z.
$$

So $Z \leq 1$, with $Z = 1$ iff the theory is a free field theory. Let's compare with what we found last lecture,

$$
\delta_Z^{(2)} = -\frac{\lambda^2}{12(16\pi^2)^2} \frac{1}{\epsilon}.
$$

Looks good and negative (for $\epsilon > 0$).

• LSZ (Lehmann, Symanzik, Zimmermann '55). Long discussion (see e.g. Peskin). Let's just state the result: the S-matrix element for m incoming particles and n outgoing ones is given by

$$
\langle \mathbf{p_1} \dots \mathbf{p_n} | S | \mathbf{k_1} \dots \mathbf{k_m} \rangle = \lim_{o.s} \prod_{i=1}^n (p_i^2 - m_i^2) Z_i^{-1/2} \prod_{j=1}^m (k_j^2 - m_j^2) Z_j^{-1/2} \tilde{G}^{n+m}(-p_i, k_i).
$$

Here \tilde{G}^{n+m} is the full $n+m$ point Green's function, including disconnected diagrams etc. The limit is where we take the external particles on shell. In this limit, the $p_i^2 - m_i^2$ and $k_j^2 - m_j^2$ prefactors all go to zero. These zeros kill everything on the RHS except for the connected contributions to \tilde{G} . Accounting for the fact that we amputate the external propagators, which go like $iZ_i(p_i^2 - m_i^2)^{-1}$, the above becomes

$$
\langle \mathbf{p_1} \dots \mathbf{p_n} | S | \mathbf{k_1} \dots \mathbf{k_m} \rangle = Z^{(n+m)/2} \tilde{G}^{n+m}_{conn,B}(-p_i, k_i) = \tilde{G}^{n+m}_{conn,R}(-p_i, k_j)
$$

This is the promised general relation between the connected Greens functions (and in particular $\tilde{\Gamma}$) and S-matrix elements.