2/12/07 Lecture 10 outline

General integrals
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with n integer and I'm(a) > 0 and k in Minkowski space. Get
I(a) =i (167%(n — 1)(n — 2)&”_2)_1 for n > 3.

Special cases
i

I = 16W2aln(—a) + ...
L=—"1
9 = W n(—a)—i—...,
where ... are terms involving the regulator.

e Recall from last time: the 1-loop term in I'® for A¢*

' (p?) = %)\/ d'kp 5 ! + more loops.
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Let’s illustrate another, extremely popular, choice of regulator: dimensional regularization.
Suppose that we had D instead of 4 dimensions. Compute by analytic continuation in D.
Then take D = 4 — ¢, and take ¢ — 0. By going slightly below 4 dimensions, we improve
the UV behavior (make the theory weaker in the UV, though stronger in the IR).
So we write
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Again, Qp_, = 27P/2/T(D/2) is the surface area of a unit sphere SP~1. Let u? = m?y
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Now use (y — 1)1 = [ dte '@~ and T'(2) = [~ dte "t*~! to get
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This blows up for D = 4, because I'(1 — D) has a pole there. Recall I'(z) has a simple

pole at z = 0, and also at all negative integer values of z.
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Recall that near x = 0,
1
D) = —7+0(),

where v ~ 0.5772 is the Euler-Mascheroni constant. For x = —n, we can write a similar
expression, which also follows from the above and I'(z+1) = 2I'(2). E.g. use I'(2—D/2) =
(1-D/2)I'(1 — D/2). Let D =4 — ¢, then (dropping O(e),
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We can apply this to evaluate H(l)(pz). One last thing: replace A\ojg = Apewpn* ™, where

Anew 18 dimensionless. Expanding around D = 4, we get
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e More useful integrals:
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e Now consider f(4)(p1,p2,p3,p4). There are three 1-loop diagrams, in the s, t, u
channels. Recall s = (p; + p2)?, t = (p1 +p3)%, u = (p1 +pa)?, s+t +u=4m?. Get

TW = — A\~ 4 (—iN)2(F(s) + F(t) + F(u)) + O(h),

where
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The % is a symmetry factor. Evaluate using
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Aside: more generally, have
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The quantity in the denominator is k% + (1 — 2)2kg - pr + (1 — 2)p% + m? = (kg + (1 —

2)pe)? + p%(1 — x)x +m?, so
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Where s = p% = —s. Evaluate the k integral using the dimreg integrals above. Expanding

around D = 4 — ¢, this gives
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So the one-loop contribution to I'® is
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The integral is evaluated using
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e Renormalization. The input to the functional integral is the “bare” lagrangian. It
is not physically observable, because we observe quantities like mass, charge, etc. with all

the quantum corrections included. Write the largrangian for the bare fields as:
Lo = 30u650" 05 — bk} — Ao 6h.
The bare field is related to the physical one by ¢p = qub/ 2(;5. We can view this as
Lp = Lphys + Let.

where
1
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involves the physical field, mass, coupling constant. What’s left are the counterterms:

Lot = HZ = 1)0,60% — HmbZ — m?)6* — (\pZ* X 10"



