Week 8 Homework (Due Nov. 16)

- 1. Use the following conventions: $\eta_{\mu\nu} = \text{diag}(-1,1,1,1)$, $\epsilon^{0123} = 1$. Define the Hodge dual of a two index antisymmetric tensor $F_{\mu\nu}$ by $(*F)_{\mu\nu} = c\epsilon_{\mu\nu\rho\sigma}F^{\rho\sigma}$, with c a real normalization constant such that ** = -1.
- a. Find the constant c.
- b. Let $F_{\mu\nu} = \partial_{\mu}A_{\nu} \partial_{\nu}A_{\mu}$, the electromagnetic field strength. Define a "dual" electromagnetic field strength by $\widetilde{F}_{\mu\nu} \equiv (*F)_{\mu\nu}$. Express the dual electric and magnetic fields, $\widetilde{\mathbf{E}}$, and $\widetilde{\mathbf{B}}$ in terms of the original fields \mathbf{E} and \mathbf{B} . Using this, rewrite Maxwell's equations in terms of $\widetilde{\mathbf{E}}$, and $\widetilde{\mathbf{B}}$.
- c. What linear combinations of **E** and **B** are eigenstates of the * operation, and with what eigenvalues?
- 2. As in the lectures, we take $\sigma^{\mu}_{\alpha\dot{\alpha}}$, with $(\sigma^0)_{\alpha\dot{\alpha}} = -\delta_{\alpha\dot{\alpha}}$ and the other $(\sigma^i)_{\alpha\dot{\alpha}}$ the usual Pauli matrices. For any vector v_{μ} , we define $v_{\alpha\dot{\alpha}} = \sigma^{\mu}_{\alpha\dot{\alpha}}v_{\mu}$.
- a. Define $\overline{\sigma}^{\mu\dot{\alpha}\alpha} \equiv \epsilon^{\dot{\alpha}\dot{\beta}}\epsilon^{\alpha\beta}\sigma^{\mu}_{\beta\dot{\beta}}$. Verify that $v^{\mu} = -\frac{1}{2}\overline{\sigma}^{\mu\dot{\alpha}\alpha}v_{\alpha\dot{\alpha}}$.
- b. Consider a general two index antisymmetric tensor $F_{\mu\nu}$. Convert the vector indices to spinor indices and write out the resulting $F_{\alpha\beta}$ and $F_{\dot{\alpha}\dot{\beta}}$ as matrices, with components given in terms of the original $F_{\mu\nu}$.
- c. In particular, when $F_{\mu\nu}$ is the electromagnetic field strength, write the $F_{\alpha\beta}$ and $F_{\dot{\alpha}\dot{\beta}}$ in terms of the components of the electric and magnetic fields **E** and **B**. Comparing with part (1c), note that $F_{\alpha\beta}$ and $F_{\dot{\alpha}\dot{\beta}}$ are eigenstates of *, and find the corresponding eigenvalues.
- 3. Consider a chiral superfield Φ and anti-chiral superfield $\overline{\Phi} = \Phi^{\dagger}$, and the superspace differential equation

$$\overline{D}_{\dot{lpha}}\overline{D}^{\dot{lpha}}\overline{\Phi}-m\Phi=0.$$

- a. The second term is chiral; verify that the first term is also chiral (annihilated by $\overline{D}_{\hat{\beta}}$).
- b. Expand out both sides in θ^{α} and $\overline{\theta}^{\dot{\alpha}}$. Set each component to zero and verify that you get the equations of motion for a massive boson and fermion.