Consider 2+1 dimensions, with coordinates x^{μ} , $\mu=0,1,2$. Let the Lorentz boost and rotation matrix act on a vector via $x^{\mu} \to R^{\mu}_{\nu} x^{\nu}$ with $R=\exp\left(i(\phi_0 T^0 + \phi_1 T^1 + \phi_2 T^2)\right)$, and

$$T^0 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix} \qquad T^1 = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ -i & 0 & 0 \end{pmatrix} \qquad T^2 = \begin{pmatrix} 0 & -i & 0 \\ -i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

1. Write out the Lorentz matrices $R_0 = \exp(i\phi_0 T^0)$, $R_1 = \exp(i\phi_1 T^1)$, and $R_2 = \exp(i\phi_2 T^2)$ and identify them as rotations or boosts.

Now consider the 2-component spinor representation, where $\psi^{\alpha} \to R^{\alpha}_{\beta}\psi^{\beta}$, with $R = \exp(i\phi_{\mu}T^{\mu})$ and $(T^{\mu})^{\beta}_{\alpha} = \frac{i}{2}(\Gamma^{\mu})^{\beta}_{\alpha}$ and $\Gamma^{0} \equiv i\sigma_{2}$, $\Gamma^{1} \equiv \sigma_{1}$, $\Gamma^{2} \equiv \sigma_{3}$, with $(\sigma_{i})^{\beta}_{\alpha}$ the usual Pauli matrices. We have defined the Γ^{μ} to be purely real.

- 2. Using the fact that $\left[\frac{1}{2}\sigma_i, \frac{1}{2}\sigma_j\right] = i\epsilon_{ijk}(\frac{1}{2}\sigma_k)$, find the structure constants $f_{\mu\nu\gamma}$ in $\left[T^{\mu}, T^{\nu}\right] = if_{\mu\nu\gamma}T^{\gamma}$ using the above spinor representation. Compute $\left[T_0, T_1\right]$ again using the above vector representation and verify that it gives the same structure constants as found for the spinor representation.
- 3. Write out the Lorentz rotation matrices $R_0 = \exp(i\phi_0 T^0)$, $R_1 = \exp(i\phi_1 T^1)$, and $R_2 = \exp(i\phi_2 T^2)$ in this spinor representation. Verify that each of these three basic rotations/boosts is an element of the group SL(2,R).
- 4. Take $\epsilon^{12} = -\epsilon^{21} = -\epsilon_{12} = \epsilon_{21} = +1$. With this choice of signs $\epsilon^{\alpha\gamma}\epsilon_{\gamma\beta} = \delta^{\alpha}{}_{\beta}$. Let $\Gamma^{\mu}_{\alpha\beta} \equiv (\Gamma^{\mu})^{\gamma}_{\alpha}\epsilon_{\gamma\beta}$, with $(\Gamma^{\mu})^{\beta}_{\alpha}$ as defined above in terms of the usual Pauli matrices. Write out, as a vector, the $\mu = 0, 1, 2$ components of $V^{\mu} \equiv \Gamma^{\mu}_{\alpha\beta}\psi^{\alpha}\chi^{\beta}$ for two spinors ψ^{α} and χ^{β} . Rotate $\psi^{\alpha} \to R^{\alpha}_{\gamma}\psi^{\gamma}$ and $\chi^{\beta} \to R^{\beta}_{\gamma}\chi^{\gamma}$ for $R = R_1 = \exp(i\theta T^1)$ as found in problem 3. Plug this into V^{μ} to find $V^{\mu} \to R^{\mu}_{\nu}V^{\nu}$ for some R^{μ}_{ν} which (hopefully) agrees with the rotation matrix R_1 for vectors, as found in problem 1.
- 5. The minimal 2+1 dimensional supersymmetry algebra is $\{Q_{\alpha},Q_{\beta}\}=2\Gamma^{\mu}_{\alpha\beta}P_{\mu}$, with the Q_{α} real. We can represent this as a superspace with two real anticommuting spinor coordinates θ^{α} via $P_{\mu}=i\partial_{\mu}$, $Q_{\alpha}=\frac{\partial}{\partial\theta^{\alpha}}+i\Gamma^{\mu}_{\alpha\beta}\theta^{\beta}\partial_{\mu}$, and also $D_{\alpha}=\frac{\partial}{\partial\theta^{\alpha}}-i\Gamma^{\mu}_{\alpha\beta}\theta^{\beta}\partial_{\mu}$. We take a superfield to be $\Phi=\phi+i\theta^{\alpha}\psi_{\alpha}+\epsilon_{\alpha\beta}\theta^{\alpha}\theta^{\beta}F$. Consider the action

$$S = \int d^3x d heta^1 d heta^2 (-rac{1}{2}\epsilon^{lphaeta}D_lpha\Phi D_eta\Phi + W(\Phi))$$

Do the θ integrals and eliminate F to find the Lagrangian.