Week 3 Homework (Due Oct. 19)

Consider a supersymmetric quantum mechanics with two conserved complex supercharges (up to now, we've been considering only one conserved supercharge), Q_{α} , for $\alpha = 1, 2$, such that $Q_{\alpha}^2 = 0$ and $\{Q_{\alpha}, Q_{\beta}^{\dagger}\} = 2H\delta_{\alpha\beta}$. Write the superspace in terms of supercoordinates t, θ_{α} , and θ_{α}^{*} . The supercharges and supercovariant derivatives are

$$Q_{lpha} = rac{\partial}{\partial heta_{lpha}} + i heta_{lpha}^* rac{\partial}{\partial t}, \qquad Q_{lpha}^\dagger = rac{\partial}{\partial heta_{lpha}^*} + i heta_{lpha} rac{\partial}{\partial t},$$

$$D_lpha = rac{\partial}{\partial heta_lpha} - i heta_lpha^* rac{\partial}{\partial t}, \qquad D_lpha^\dagger = rac{\partial}{\partial heta_lpha^*} - i heta_lpha rac{\partial}{\partial t}.$$

Define a chiral superfield to be a complex field Φ which satisfies $D_{\alpha}^{\dagger}\Phi = 0$ for $\alpha = 1, 2$. Likewise, an anti-chiral superfield is one which satisfies $D_{\alpha}\overline{\Phi} = 0$. Note that $D_{\alpha}^{\dagger}(\theta_{\beta}) = 0$.

- a) Verify that $D^{\dagger}T = 0$ for $T \equiv t + i\theta_1\theta_1^* + i\theta_2\theta_2^*$. We can write this as $T = t + i\theta_\alpha\theta_\alpha^*$, summing the repeated indices (it looks even nicer if we write $\theta^{*\alpha}$, but I won't bother).
- b) Write the general chiral superfield as $\Phi(\theta_{\alpha}, T) = \phi(T) + \theta_{\alpha}\psi_{\alpha}(T) + \theta_{1}\theta_{2}F(T)$. Expand this out to write it in terms of the fermionic coordinates and the functions $\phi(t)$, $\psi_{\alpha}(t)$, and F(t) and their derivatives.
 - c) Verify that $\overline{\Phi} \equiv \Phi^{\dagger}$ is an anti-chiral field.
- d) Verify that $\int dt d\theta_1 d\theta_2 W(\Phi, \Phi^{\dagger})$ respects the Q_{α} supersymmetries for any function $W(\Phi, \Phi^{\dagger})$. Verify that it respects the Q_{α}^{\dagger} supersymmetries if and only if $\partial W/\partial \Phi^{\dagger}=0$, i.e. $W=W(\Phi)$, independent of Φ^{\dagger} . Likewise, verify that $\int dt d\theta_1^* d\theta_2^* \overline{W}$ respects all supersymmetries if and only if W is a function only of the anti-chiral field $\overline{\Phi}=\Phi^{\dagger}$. Finally, verify that $\int dt d^2\theta d^2\theta^* K(\Phi, \overline{\Phi})$ respects supersymmetry for any function K, without restrictions. Hint: you can save ink by using the above superderivative expressions for the action of the supersymmetry generators and noting that $\int dt dG/dt=0$ and $\int d\theta dG/d\theta=0$ for any superfunction G.

Consider the action $S = \int dt \mathcal{L}$, with

$$\mathcal{L} = \int d^4 \theta K(\Phi, \overline{\Phi}) + \int d^2 \theta W(\Phi) + \int d^2 \theta^* W(\overline{\Phi}).$$

e) Do the θ_{α} and θ_{α}^{*} integrals to write out the action for the component fields ϕ , and ψ_{α} , and ψ_{α}^{*} . Eliminate the auxiliary fields F and F^{*} by their equations of motion.