- 1. Verify $\{Q, D\} = \{Q^{\dagger}, D\} = \{D, D\} = 0$ and $\{D, D^{\dagger}\} = -2H$ using $Q = \frac{\partial}{\partial \theta} + i\theta^* \frac{\partial}{\partial t}$, $Q^{\dagger} = \frac{\partial}{\partial \theta^*} + i\theta \frac{\partial}{\partial t}$, $D = \frac{\partial}{\partial \theta} i\theta^* \frac{\partial}{\partial t}$, $D = \frac{\partial}{\partial \theta^*} i\theta \frac{\partial}{\partial t}$.
- 2. Consider a theory with N real superfields $\Phi_I = \phi_I + \theta \psi_I \theta^* \psi_I^* + \theta \theta^* F_I$ $(I = 1 \dots N)$. Suppose that the action is

$$S = \int dt d heta d heta^* \left(-rac{1}{2} \sum_{I=1}^N D\Phi_I D^\dagger \Phi_I + W(\Phi)
ight),$$

where $W(\Phi)$ is a general function of all Φ_I . Do the $d\theta d\theta^*$ integrals and write out the Lagrangian in terms of the fields ϕ_I , ψ_I , and ψ_I^* , with all F_I eliminated by their equations of motion. What are the conditions for the classical supersymmetric vacua, with fermions set to zero (the generalization of W'=0 to this multi-field case)?

3. In the above N field theory, let $|\Omega\rangle$ be a state which is annihilated by all ψ_I , with the ψ_I^* acting on $|\Omega\rangle$ as creation operators. Let $|\Omega\rangle$ have $(-1)^F$ eigenvalue +1 and recall that $\{(-1)^F, \psi_I^*\} = 0$. In this notation, we write the groundstate for the case with N = 1 field and $W(\Phi) = m\Phi^2$ as

$$\begin{cases} e^{-W(\phi)/\hbar} |\Omega\rangle & \text{if } m > 0 \\ e^{W(\phi)/\hbar} \psi^* |\Omega\rangle & \text{if } m < 0. \end{cases}$$

So the groundstate has $(-1)^F = \operatorname{sign}(m)$. Now consider the N variable case, with $W = \sum_{I=1}^N m_I \Phi_I^2$. Suppose that $m_1 \dots m_K$ are all negative and $m_{K+1} \dots m_N$ are all positive.

- a) How many ground states are there?
- b) Write the groundstate(s) in the above form (a function of the ϕ_I combined with the fermion part of the wavefunction, written in terms of the basis generated by $|\Omega\rangle$ via the creation operators ψ_I^*). (Hint: the bosonic part should be familiar: remember your quantum mechanics.)
 - c) What is the total $Tr(-1)^F$ of this theory, including the sign?
 - 4. Consider the theory with two superfields, Φ_1 and Φ_2 , and $W = \Phi_1(\Phi_2^2 1)$.
 - a) What are the classical vacua?
- b) In each classical vacuum, consider the mass matrix for the fluctuations away from the potential minimum. Using the result of the previous problem, find the value of $(-1)^F$ for each classical vacuum.
 - c) What is the total $Tr(-1)^F$ of this theory, including the sign?