
215c, 1/30/21 Lecture outline. c© Kenneth Intriligator 2021.

? Week 1 recommended reading: Schwartz sections 25.1, 28.2.2. 28.2.3.

You can find more about group theory (and some of my notation) also here

https://keni.ucsd.edu/s10/

• At the end of 215b, I discussed spontaneous breaking of global symmetries. Some

students might not have taken 215b last quarter, so I will briefly review some of that

material. Also, this is an opportunity to introduce or review some group theory.

• Physics students first learn about continuous, non-Abelian Lie groups in the context

of the 3d rotation group. Let ~v and ~w be N -component vectors (we’ll set N = 3 soon).

We can rotate the vectors, or leave the vectors alone and rotate our coordinate system

backwards – these are active vs passive equivalent perspectives – and scalar quantities

like ~v · ~w are invariant. This is because the inner product is via δij and the rotation is

a similarity transformation that preserves this. Any rotation matrix R is an orthogonal

N ×N matrix, RT = R−1, and the space of all such matrices is the O(N) group manifold.

Note that detR = ±1 has two components, and we can restrict to the component with

detR = 1, which is connected to the identity and called SO(N). The case SO(2), rotations

in a plane, is parameterized by an angle θ ∼= θ + 2π, so the group manifold is a circle. If

we use z = x+ iy, we see that SO(2) ∼= U(1), the group of unitary 1× 1 matrices eiθ. The

case SO(3) is parameterized by 3 angles – the Euler angles, e.g. we can rotate ẑ to some

n̂ specified by the usual θ and φ of polar coordinates, and then rotate by a 3rd angle ξ

around n̂. In QM we learn that we generally need a double cover of the rotation group to

allow for spinors where a 2π rotation is −1 rather than +1. This version of the rotation

group is SU(2), the group of unitary 2 × 2 matrices U† = U−1 with detU = 1. If we’re

not making the distinction about global issues we can roughly say that SO(3) ∼= SU(2);

for higher N the groups SO(N) and SU(N) are distinct also locally. Note that SO(N)

rotations can be written as R = eiφ
aTa where T a is an antisymmetric N ×N matrices, so

there are 1
2N(N − 1) of them, i.e. the index a = 1 . . . 12N(N − 1). The group SU(N) has

U = eiφ
aTa with T a Hermitian and traceless, so a = 1 . . . N2 − 1. The T a are called the

group generators. For SU(2), we are very familiar with this from QM, where T a = Ja/h̄, is

the angular momentum. Groups have a multiplication rule, corresponding to multiplication

of the matrices R or U , and a group is non-Abelian if some gh 6= hg. Writing g = eiφ
a
gT

a

,

then [T a, T b] = ifabcT
c, and the group is non-Abelian if the Lie algebra structure constants

fabc 6= 0. The fact that group multiplication must give another group element requires the
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Jacobi identity for the commutators, imposing conditions on the structure constants fabc;

SU(2) is the simplest non-Abelian Lie group, with fabc = εabc.

The Lorentz group is SO(1, 3), which is an example of a non-compact group since the

Lorentz boost parameter (e.g. the rapidity) lives on the non-compact real line rather than

a circle. If we continue to Euclidean space, then we instead get SO(4) ∼= SU(2)L×SU(2)R.

• Let’s now recall the notation of the representation of the group. In the case of SU(2),

recall that we write |j,m〉 with m = −j, . . . j and j integer or half-integer. Here j labels

the representation, which is (2j + 1)-dimensional, and m runs over the dimension of the

representation. If we write 〈jm′|Ja/h̄|jm〉 = (T aj )m′,m, then that is the generator’s matrix

element in that representation; it satisfies the Lie algebra commutation relations and we

can exponentiate it to get the group elements in that representation. The case j = 0 is

the trivial representation, where we replace T a → 0 and g → 1. This is a one-dimensional

representation. The case j = 1
2 is a two-dimensional representation, and it is called the

fundamental representation; in the fundamental representation, the group elements are

taken to be literally the SU(2) matrices themselves. It is called fundamental because

taking tensor products with the fundamental representation leads to all representations;

recall addition of angular momentum. The case j = 1 is called the adjoint representation;

the special thing about the adjoint representation is that its dimension is the same as

the number of generators (three for SU(2)), and indeed for any Lie algebra the adjoint

representation has (T a)bc = fabc . The Jacobi identify ensures that this satisfies the Lie

algebra’s commutation relations. The other j representations do not have special names.

• Now consider SU(3). If we write U = eiφ
aTa , then a = 1 . . . 8, and the 8 generators

have [T a, T b] = ifabc T
c for some structure constants fabc . For the case of SU(2), the

generators in the fundamental representation are T a = 1
2σ

a, where we call σa the Pauli

matrices. Likewise for SU(3), we can write T a = 1
2λ

a, where we call the λa the Gell-Mann

matrices. Particle physicists first met SU(3) in the context of what I’ll call SU(3)F , an

approximate global symmetry (with F for flavor) that rotates the (u, d, s) quark flavors

into each other. Later, it was learned that the strong force is given by a conceptually

completely different instance of SU(3): the SU(3)C gauge symmetry that acts on (r, g, b)

colors of quarks. I will first say some general things about any instance of SU(3), and then

illustrate it in the context of SU(3)F . Then SU(3)C will be discussed a bit later.

The λa are 3× 3 matrices, and T a = 1
2λ

a is the fundamental representation of SU(3).

For general SU(N), every representation has an anti-version, where we replace U → U∗,

i.e. T a → −(T a)∗. For the special case of SU(2), this is not interesting because they
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differ by a similarity transformation, and SU(2) is thus called pseduoreal. For SU(N > 2)

the rep and its anti-rep can be inequivalent; in particular there is both a fundamental

and an anti-fundamental representation, and they differ from each other. They are often

called the 3 and 3̄ representations. The adjoint representation, where T a → fabc is called

the 8 and it is said to be real because 8 ∼= 8̄. Examples of SU(3) tensor products are

3 × 3 = 3̄A + 6S and 3 × 3̄ = 1 + 8. Note that the last one shows that 1 and 8 are real

and it is similar to what in SU(2) notation where reps are labeled by (j) we’d write as

( 1
2 )× ( 1

2 ) = (0)A + (1)S , which if we label instead by the dimension of the rep we’d write

as 2× 2 = 1 + 3. The subscripts are useful if the two reps on the LHS are the same, and

refer to antisymmetric vs symmetric under exchange of the two.

Note that 3 × 3 × 3 = 1A + . . ., where the 1A is completely antisymmetric in all

three objects. Let ui, vi, and wi denote the three fundamental objects on the LHS. They

transform as ui → U iju
j under a SU(3) transformation. The statement is that uiujukεijk

is SU(3) invariant. This is because εijk transforms to itself with a factor of detU , and the

S in SU(3) is because we impose detU = 1. Likewise, the 1 in 3 × 3̄ can be understood

as the statement that ūiv
i → ūU†Uv = ūv because U†U = 1, which can be understood in

terms of δji being an SU(3) invariant tensor.

• We know from QM that it’s useful to go to a basis where we diagonalize all of the

commuting observables. Similarly, for group theory we can choose to diagonalize as many

of the T a as possible. For SU(2), we can diagonalize one of the three generators, and we

choose to call that one J3. For SU(3), we can diagonalize two of the eight generators and

we choose to call those T 3 and T 8, with λ3 = diag(1,−1, 0) and λ8 = 1√
3
diag(1, 1,−2).

The fact that λ8 and −λ8 have different eigenvalues illustrates that the 3 and 3̄ reps

are inequivalent. For SU(2), the values m run over what is called the weights of the

representation, for the fundamental representation the weights are ± 1
2 and for the adjoint

they are −1, 0, 1. For SU(3), the weights are a 2d vector, corresponding to the T 3 and

T 8 eigenvalues. For the fundamental representation, the weights are ( 1
2 ,

1
2
√
3
), (− 1

2 ,
1

2
√
3
),

and (0,− 1√
3
), forming a little equilateral triangle. All SU(3) weights can be obtained

by composing this triangle to form other triangles and shapes. The weights of the anti-

fundamental representation are minus these, corresponding to a reflected version of the

basic triangle. We can write raising and lowering operators E±1,0 = 1√
2
(T1 ± iT2) in

analogy with the J± of SU(2): these raise or lower the first weight by 1 unit, and do not

affect the second weight. SU(3) symmetry relates them to E
± 1

2 ,±
√

3
2

= 1√
2
(T4 ± iT5) and
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E
∓ 1

2 ,±
√

3
2

= 1√
2
(T6 ± iT7). Each of these must either map a weight to another weight, or

they act to annihilate that weight. The subscripts of the E’s give the six non-zero weights

of the adjoint representation, forming a hexagon, with T 3 and T 8 corresponding to two

weights of (0, 0) since they commute with each other.

• Let’s illustrate this with some physics. Recall that the Dirac Lagrangian naturally

admits unitary symmetries that act on the Fermion ψ. Consider L =
∑N
j=1 ψ̄j(i /D−mj)ψj .

If the mj are all equal, there is a U(N) symmetry. If the mj are all zero, it enhances to

an U(N)L × U(N)R symmetry, acting on ψL,R = 1
2 (1 ∓ γ5)ψ. Recall that in the Dirac

basis γ5 =

(
1 0
0 −1

)
, so ψL,R can be written as 2-component Fermions. The mass terms

transform as a bi-fundamental under U(N)L × U(N)R, and if it is proportional to the

identity matrix then it explicitly breaks U(N)L×U(N)R → U(N)D=L+R. Write U(N)L×
U(N)R ∼= SU(N)L×SU(N)R×U(1)V ×U(1)A. The currents are jµV =

∑
j ψ̄jγ

µψj , while

jµA = ψ̄γµγ5ψj , and the SU(Nf )L,R currents are jaL,R = ψ̄T aPL,Rψ. We will later discuss

anomalies and see that U(1)A can be violated by quantum effects.

I now have a decision to make: which symmetry should I illustrate first. There

are several options. In the Standard Model (advertisement for this week’s colloquium

by Steven Weinberg!), there are quarks in three families

(
u
d

)
,

(
c
s

)
,

(
t
b

)
. Each of

these doublet matrices denotes a 2 fundamental representation of su(2)W gauge symmetry

(here W stands either for Weak or Weinberg). All 6 quark “flavors” are in the 3 of

the su(3)C gauge symmetry of the strong force, which rotates a “color” gauge index e.g.

(red, green, blue). Baryons (e.g. the proton, neutron, and many exotics) are made up from

3 quarks, which are in the color singlet component of 3× 3× 3 = 1A + . . .. Mesons (e.g.

the pions) are made up from a quark and an anti-quark, which are in the color singlet

component of 3× 3̄ = 1+ . . .. These illustrate the fact that su(3)C is in a confining phase.

I will discuss non-Abelian gauge theories, such as su(2)W and su(3)C soon. But first

I will follow the historical route and illustrate SU(3) group theory via an approximate

SU(3)F global symmetry that rotates the (u, d, s) quark flavors. This is an enhancement

of the SU(2)isospin that was found to be an approximate symmetry of nuclear physics,

with e.g.

(
p
n

)
a doublet and (π+, π0, π−) a triplet. In terms of the underlying quarks,

isospin is the SU(2)F ⊂ SU(3)F that rotates the (u, d) quarks. The up and the down

and strange quarks are pretty light, so we can approximate their mass as zero to get a

pretty good approximate. They have different electric and SU(2)W charges, but those

are small effects compared with the strong force – as far as the strong force is concerned,
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they are all the same. So as far as the strong force is concerned there is an approximate

SU(3)L × SU(3)R ×U(1)V ×U(1)A classical global symmetry. The qualifier classical was

included as a legal disclaimer, because U(1)A is actually violated by the strong force, by

the Adler-Bell-Jackiw anomaly, to be discussed a bit later. So the actual (approximate)

global symmetry is G = SU(3)L × SU(3)R × U(1)V .

The above (approximate) global symmetry turns out to be spontaneously broken by

the vacuum, 〈ψ̄ψ〉 ∼ Λ3
QCD (with Fπ ≈ 190MeV and ΛQCD ≈ 300MeV ) to the subgroup

H = SU(3)D=L+R × U(1)V . Recall from last quarter Goldstone’s theorem: whenever a

continuous global symmetry G is broken by the vacuum to a subgroup H, then the broken

currents do not annihilate the vacuum but instead create a massless scalar field particle:

〈πa(p)|jµ,aG/H(x)|Ω〉 = iFπp
µe−ip·x, where the πa take values in the compact coset space

G/H. It is usually written as U(x) ∈ SU(Nf ) = exp( 2i
fπ
π(x)) with π(x) ≡ πa(x)T a.

Although the SU(3) is a pretty good approximation, an SU(2) subgroup is even better,

because the strange quark isn’t as light as the up and down quarks. If we focus on

the subgroup SU(2)L × SU(2)R → SU(2)D=L+R, the G/H ∼= SU(2) ∼= S3, our Nambu

Goldstone bosons take values in a 3-sphere. The remaining SU(2)D is called isospin,

and all particles can be organized into isospin representations. The NGBs transform as

π → gLπg
†
R, where gL,R ∈ SU(2)L,R, and this corresponds to the adjoint representation

under SU(2)D. Ignoring the quark masses and electromagnetism and the weak force, there

would be three massless NGB scalar particles, and these are identified with the pions π±

and π0. They are indeed quite light, and their masses can be viewed as coming from the

underlying quark masses (more precisely, from the Yukawas coupling them to the Higgs

field) along with effects from the electroweak force: find mu ≈ 2MeV , md ≈ 4.8MeV .

The masses of the three lightest pions are mπ0 = 135MeV and mπ± = 140MeV . The

π+ contains ud̄ quarks and has a lifetime of ∼ 10−8s (π+ → µ̄ + νµ), and π0 contains
1√
2
(uū− dd̄) quarks with a lifetime of 10−16s (π0 → 2γ).

If we include the strange quark then there are 8 light pions, corresponding to the

adjoint representation of SU(3)D=L+R:
π0
√
2

+ η0√
6

π+ K+

π− −π0
√
2

+ η0√
6

K0

K− K̄0 −2 η0√
6

 ∈ 8.

We can plot the quarks and these mesons in the (T3, T8) plane, with the quarks in a triangle

and the above mesons in a hexagon. It is conventional to plot it in terms of Qelec and S,
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and also hypercharge Y = T8(2/
√

3) ≡ B + S and Qelec = T3 + Y/2. The top row of the

hexagon has the K0andK+, with s = 1. The next row has the π− and π+ at the ends, and

π0 and η in the middle, with s = 0. The next row has the K0 and K̄0 on the bottom, with

s = −1. Note that electric charge is constant along the diagonals, with q = −1, q = 0, and

q = 1. This is the original ”Eightfold way” of Gell-Mann.

The baryons, including the proton and the neutron and others, also form SU(3)F

representations and Gell-Mann used e.g. SU(3)F to predict the existence, and the mass,

of a then unseen but later experimentally confirmed baryon that is now understood to be

made up from three strange quarks in the 10 of SU(3)F and with spin j = 3/2. Note that

this is completely symmetric in the SU(3)F labels and in the spin, and this fits with Fermi

statistics because it is completely antisymmetric in su(3)c to get something color neutral.

• Write U(x) ∈ SU(Nf ) = exp( 2i
fπ
π(x)) with π(x) ≡ πa(x)T a. E.g. for SU(2) the πa

are the Euler angles, which live in a compact space and parameterize a S3 ∼= SU(2). The

broken SU(Nf )L × SU(Nf )R act on U as U → L†UR and using the unbroken SU(Nf )D

we can locally rotate U → 1 and see that is preserved if L = R. Note that Tr(U†∂µU) = 0

because the generators are traceless, and U†∂µU = −∂U†U , so there is a unique kinetic

term that respects the symmetry (called the chiral Lagrangian):

L2 =
f2π
4

Tr(∂µU†∂µU) = 1
2∂

µπa∂µπ
a − 2

3f2π
Tr(π2(∂π)2 − (π∂π)2) + . . . .

This describes the massless pions, and their derivative interactions. This is the low-energy

effective field theory for the spontaneously broken phase, and the theory can be treated

as a LEEFT with a cutoff at ∼ fπ ∼ v ∼ Λ. We can see how aspects of the original,

microscopic theory show up in the LEEFT dual.

The SU(Nf )D global symmetry is manifest and unbroken in the LEEFT. The separate

SU(Nf )L and SU(Nf )R secret symmetries act as U → L†UR and are thus realized as shifts

of the NGBs. The SU(Nf )L current acts as δLU ≈ −iαaT aU ≈ − 1
2fπ∂µπ

a, which fits

with the fact that these currents do not annihilate the vacuum but instead act on it to

create the NBGs, 〈πb(p)|JaL,µ(x)|0〉 = i fπ2 δ
abpµe

ipx. Likewise JaR,µ ≈ + 1
2fπ∂µπ

a so the

diagonal sum is unbroken.

Parity P takes ~x→ −~x and thus γ5 → −γ5 and thus exchanges L↔ R. It thus takes

U → U∗ so πa → −πa. This fits with ∂µπ
a ∼ JaL−R,µ. This shows that pions transform as

parity odd pseudoscalars, which fits with observation (based on which decays are allowed

vs suppressed).
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If we add mass terms δL = mij̃ψ
iψ̃j̃+h.c., we explicitly break SU(Nf )L and SU(Nf )R

because the masses are in the (N̄f , Nf ). This shows up in the LEEFT as mass terms for

the NGBs: δL = 1
2σTrmU + h.c.→ − σ

f2
π

Tr(m+m†)π2 + . . .. Note that the mass-squared

of the NGBs is proportional to the Fermion mass times the SSB vev.

• If U(1)A were a symmetry, there would have to be a 9th pseudoscalar (since it is

P odd) meson; the candidate observed particle is called the η′, but it is too massive to

be considered an approximate NGB. The resolution is that U(1)A is not a symmetry, as

already mentioned, and this gives the η′ a large mass compared to the light pions. The

pions are not massless because the global symmetries are explicitly broken by the non-

zero quark mass terms; approximate values are mu ≈ md ≈ 0.307GeV , ms ≈ 0.490GeV ,

and approximate formulae for the meson masses from this explicit breaking would give

mη′,wrong ≈ 355MeV whereas mη′,actual ≈ 958MeV .

• The G/H space SU(Nf )D has non-trivial topology: it contains a S3 so π3(G/H) = Z

for Nf ≥ 2. For Nf ≥ 3 it also contains a S5, so π5(G/H) = Z for Nf ≥ 3. The S3 means

that there can be solitonic particle configurations, where space and the point at infinity,

are wound around the S3 target; these are called Skyrmions, and it turns out that they

have the right quantum numbers to give the baryons of the original UV theory of quarks

and gluons, now realized as solitons on the space of pions. The S5 plays a role in giving

what is known as the Wess-Zumino-Witten interaction of the low-energy theory. If there

is time, this will be discussed in the context of ’t Hooft anomaly matching.
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