
215c, 4/8/20 Lecture outline. c© Kenneth Intriligator 2020.

⋆ Week 2 reading: Tong chapter 1, and start chapter 2.

http://www.damtp.cam.ac.uk/user/tong/gaugetheory.html

• Continue from last time with the θ term.

Sθ,u(1) =

∫
d4x

θ

4π2h̄c
~E · ~B =

∫
d4x

θ

32π2h̄c
ǫµνρσFµνFρσ = h̄

∫
θc1(F ) ∧ c1(F ).

The normalization is such that Sθ = h̄θk with k ∈ Z an integer (called the instanton

number). Then eiS/h̄ in the path integral is periodic in θ ∼= θ + 2π. There are interest-

ing variants, with different periodicities (e.g. 4π) on certain spacetime manifolds, and a

discussion of such cases could make for a good final presentation topic.

• If θ is replaced with a dynamical scalar field, the field is called the axion a (we had a

recent colloquium by Frank Wilczek about this). The axion’s field target space is a circle,

a ∼= a + 2π. Let’s replace θ → θ(t, ~x), which could either be the dynamical axion or an

external background source for the operator F̃µνFµν . The classical EOM for Aµ become:

∇ · ~E = j0e −
αc

π
∇θ · ~B, α ≡ e2/4πh̄c,

−
1

c2
∂ ~E

∂t
+ ∇ × ~B = ~je +

α

πc
(θ̇ ~B + ∇θ × ~E),

where jµe is the electric current associated with matter fields. The fact that θ enters the

EOM only via derivative terms, so it drops out of the EOM if θ is a constant, fits with

the fact that θ is the coefficient of a total derivative term. The fact that it is the total

derivative of a gauge non-invariant does not affect the fact that it drops out of the EOM;

this is a general aspect of topological terms. For example, there are intergalactic magnetic

fields which, with a varying θ, can source electric fields.

In absence of electric and magnetic sources, we set jµe = 0, and jµm = 0, and the other

two Maxwell equations are unchanged, ∇ · ~B = 0 and ∂t ~B + ∇ × ~E = 0. If we define

~D = ǫ0( ~E + αcθ
π
~B) and ~H = µ−1

0 ( ~B − αθ
πc
~E), then ∇ · ~D = 0 and ∇ × ~H − ∂t ~D = 0. At

an interface where θ changes, there are associated surface charges and currents. If there

are no other external charges and currents, these follow from n̂ ·∆ ~D = 0 and n̂×∆ ~H = 0.

E.g. there are topological insulator materials which effectively have θ = π. Consider an

interface, e.g. θ = πΘ(−z). Then if an external source makes ~B, get surface electric

charge density σ = αcBn̂. If an external source makes ~E, get surface current density

~K = αǫ0c ~E × n̂. This is a Hall conductivity σ = 1
2 · e2

2πh̄ .
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• Dyons are objects with both electric charge qe and magnetic charge qm. The charge

pair is written as (qe, qm), so a basic electric charge is (1, 0) and a basic magnetic charge

is (0, 1). The generalization of Dirac’s quantization argument is to consider an object

of charges (q1,e, q1,m) in the background of an object with charges (q2,e, q2,m) and the

resulting Dirac-Zwanziger quantization condition is q1,eq2,m − q2,eq1,m ∈ 2πh̄Z.

• The Witten effect: θ gives electric charge ∼ θ to magnetic monopoles. Suppose we

take the minimum electric charge to be qe = 1, and the minimum magnetic charge is then

qm = 2πh̄. The minimum magnetic charge monopole becomes a dyon with electric charge

qe = θ
2π

. This can be understood from ∂µθ terms in the above EOM for ~E and ~B. If θ is

rotated from 0 to 2π, the original monopole becomes a bound state of a monopole and an

object of electric charge 1. There is a generalization for dyons, and it is compatible with

the Dirac-Zwanziger quantization condition (θ cancels).

• The gauge group of the Standard Model is su(3)C × su(2)W × u(1)Y (there are

some nice fine points about discrete symmetries that I might return to later, but ignore

here). The u(1)Y part is similar to the above, though with a crucial difference that the left

and right-handed chiral Fermions have different q charges. The su(3)C and su(2)W gauge

symmetries are somewhat similar, but there are several crucial differences. First, these

symmetries are non-Abelian (recall the non-Abelian nature of su(2) as seen by rotating a

book along two axes in different orders giving different final orientations). Also, su(2)W

is chiral: it only acts on left-handed Fermions; this is why the weak interactions violate

P . Also, su(2)W and u(1)Y are broken to a u(1)EM subgroup by the vacuum expectation

value of a Bose condensate (the Higgs field), which is why the W±
µ and Zµ gauge fields are

massive. I intend to discuss these and related topics further in this class.

• Let’s start by discussing the analogs of Dµ and Fµν in a gauge theory with non-

Abelian group G. To be concrete, I will sometimes take G = SU(2), but most of the

discussion for now will be general. I will also sometimes use the notation of writing the

gauge group, in lower case letters, e.g. su(2), to distinguish a local gauge symmetry vs

global symmetry. We can consider a pure Yang-Mills theory, which means only gauge

fields and no matter representations, or we can include matter fields. The matter fields

could be scalars (e.g. the Higgs in the SM) φ or Fermions ψ (as in QED, these are Dirac

if m 6= 0 or, for m = 0, we can have left and / or right-handed chiral fermions – more

on this shortly). The matter fields are in representations of the gauge group, and the

most-discussed cases are the fundamental, anti-fundamental, and adjoint representations;
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for su(2) the fundamental and anti-fundamental are 2 ∼= 2̄ (like j = 1
2 for the rotation

group), and the 3 adjoint representation (like j = 1 for rotations).

Consider e.g. su(N) with ψc
α in the fundamental, where α = 1, 2 is a spinor index

and c = 1, . . .N is the su(N) color index; the Lorentz index α goes for the ride and will

usually be suppressed. The su(N) gauge symmetry takes ψc → U c
d(x)ψ

d where we sum

the repeated color index. Here U(x) is an element of the SU(N) group manifold (e.g. for

SU(2) it’s ∼= S3): U †U = 1 and detU = 1, and we can thus write it as the exponential of

Hermitian, traceless N ×N matrices; there are N2 − 1 of these and for the rotation group

these are the 3 generators Ja. An anti-fundamental can be written as ψ̃c which transforms

as ψ̃c → U∗d
cψ̃d and U †U means that δcd is invariant and detU = 1 means that ǫc1...cN

and ǫc1...cN are invariant. For SU(2), the fundamental and anti-fundamental are related

by ψ̃c = ǫcdψ
d.

• We now want to write a covariant derivative, such that ψ → Uψ takes Dµψ →

DU
µ Uψ = UDµψ, so D

U
µ = UDµU

−1. Let’s write it as Dµ = ∂µ − iAµ (this changes the

sign of Aµ vs my convention for u(1), to agree with the notation for the non-Abelian case

in other references), with Aµ = Aa
µT

a. Note that, when we write Dµ = ∂µ− iAµ, it should

be understood that Aµ = Aa
µT

a
R, with R the representation of the field that it acts on. For

example, if acting on something that is invariant, i.e. the trivial rep, then T a
R = 0 and

Dµ → ∂µ (similar to how in GR the ∇µ notation has implicit the connection, which depend

on what it acts on, with e.g. ∇µ → ∂µ if acting on a scalar). For u(1), the generator

T a
R → q, the electric charge of the operator on which it acts. For su(2), if acting on the rep

labeled by I (analogous to j for the rotation group), then e.g. Dµ = ∂µ12I+1 + iAa
µT

a
2I+1,

where from now on I will not explicitly write the 1 or the R reminder that Dµ depends on

the representation of the field on which it acts.

We want DU
µ (Uψ) = UDµψ, i.e. ∂µU − iAU

µU = −iUAµ. So AU
µ = iU∂µU

−1 +

UAµU
−1. As a check, for U(1) with U = eiα this gives AU

µ = ∂µα + Aµ. More generally,

taking U = exp(iα), with α = αaT a and expand for an infinitesimal αa, get δAµ = Dµα =

∂µα + [iAµ, α]. Writing Da
µ = ∂µ − iAa

µ, (Dµα)
a = ∂µα

a − Ab
µα

cfabc.

The gauge field strength tensor corresponds to a commutator of covariant derivatives

(analogous to the Riemann curvature tensor):

Fµν = i[Dµ, Dν ] = ∂µAν − ∂νAµ − i[Aµ, Aν ] = Fµν = F a
µνT

a,

F a
µν = ∂µA

a
ν − ∂νA

a
µ + fabcAb

µA
c
ν .
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Fµν is in the adjoint rep, transforming as Fµν → FU
µν = UFµνU

−1. For U =

exp(iαaT a) and αa infinitesimal, get δFµν = i[α, Fµν ], which is the statement that Fµν

transforms in the adjoint rep. The Lagrangian density must of course be gauge invari-

ant, and the gauge kinetic terms come from the quadratic casimir (squaring and taking

the trace): L ⊃ − 1
2g2Tr(FµνF

µν). E.g. for G = SU(2), we can use a notation in-

spired by the rotation group, where the j = 1 adjoint is denoted by a 3d vector, so

~F = ∂µ ~Aν − ∂ν ~Aµ + ~Aµ × ~Aν , and the gauge kinetic terms are − 1
4g2

~Fµν · ~Fµν .
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