215¢, 4/8/20 Lecture outline. (© Kenneth Intriligator 2020.
* Week 2 reading: Tong chapter 1, and start chapter 2.
http://www.damtp.cam.ac.uk/user/tong/gaugetheory.html

e Continue from last time with the 6 term.

0 nl 5 0 vpo
So,u(1) = /d4x47r2th -B = /d%me” POR W F e = h/@cl(F) A ey (F).

The normalization is such that Sy = hfk with k£ € Z an integer (called the instanton
number). Then e’S/" in the path integral is periodic in # = 6 + 27. There are interest-
ing variants, with different periodicities (e.g. 47) on certain spacetime manifolds, and a
discussion of such cases could make for a good final presentation topic.

e If 4 is replaced with a dynamical scalar field, the field is called the azion a (we had a
recent colloquium by Frank Wilczek about this). The axion’s field target space is a circle,
a = a+ 2w. Let’s replace § — 0(t,¥), which could either be the dynamical axion or an
external background source for the operator F*F wv- The classical EOM for A,, become:
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where j# is the electric current associated with matter fields. The fact that 6 enters the
EOM only via derivative terms, so it drops out of the EOM if @ is a constant, fits with
the fact that 6 is the coefficient of a total derivative term. The fact that it is the total
derivative of a gauge non-invariant does not affect the fact that it drops out of the EOM;
this is a general aspect of topological terms. For example, there are intergalactic magnetic
fields which, with a varying 6, can source electric fields.

In absence of electric and magnetic sources, we set j# = 0, and j# = 0, and the other
two Maxwell equations are unchanged, V - B=0and B+ V x E = 0. If we define
D = ¢(E + O‘Tceg) andﬁ:ual(é—fr—gﬁ),then V-D=0and Vx H—08,D =0. At
an interface where 6 changes, there are associated surface charges and currents. If there
are no other external charges and currents, these follow from 7 - AD =0and A x AH = 0.
E.g. there are topological insulator materials which effectively have § = m. Consider an
interface, e.g. 0§ = mO(—z). Then if an external source makes B, get surface electric
charge density ¢ = acBn. If an external source makes E, get surface current density

1. e?

K = aegcE x f. This is a Hall conductivity o = 5 - 5.
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e Dyons are objects with both electric charge ¢. and magnetic charge ¢,,. The charge
pair is written as (ge, gm ), so a basic electric charge is (1,0) and a basic magnetic charge
is (0,1). The generalization of Dirac’s quantization argument is to consider an object
of charges (qi.e,q1,m) in the background of an object with charges (g2.¢,q2.m) and the
resulting Dirac-Zwanziger quantization condition is qi1 ¢q2.m — ¢2,eq1,m € 27hZ.

e The Witten effect: 6 gives electric charge ~ 6 to magnetic monopoles. Suppose we
take the minimum electric charge to be g. = 1, and the minimum magnetic charge is then
G¢m = 2mh. The minimum magnetic charge monopole becomes a dyon with electric charge
Qe = %. This can be understood from 9,60 terms in the above EOM for E and B. If 0 is
rotated from 0 to 27, the original monopole becomes a bound state of a monopole and an
object of electric charge 1. There is a generalization for dyons, and it is compatible with
the Dirac-Zwanziger quantization condition (€ cancels).

e The gauge group of the Standard Model is su(3)c x su(2)w x u(l)y (there are
some nice fine points about discrete symmetries that I might return to later, but ignore
here). The u(1)y part is similar to the above, though with a crucial difference that the left
and right-handed chiral Fermions have different ¢ charges. The su(3)c and su(2)w gauge
symmetries are somewhat similar, but there are several crucial differences. First, these
symmetries are non-Abelian (recall the non-Abelian nature of su(2) as seen by rotating a
book along two axes in different orders giving different final orientations). Also, su(2)w
is chiral: it only acts on left-handed Fermions; this is why the weak interactions violate
P. Also, su(2)w and u(1)y are broken to a u(1)gys subgroup by the vacuum expectation
value of a Bose condensate (the Higgs field), which is why the VVMi and Z# gauge fields are
massive. I intend to discuss these and related topics further in this class.

e Let’s start by discussing the analogs of D, and F),, in a gauge theory with non-
Abelian group G. To be concrete, I will sometimes take G = SU(2), but most of the
discussion for now will be general. I will also sometimes use the notation of writing the
gauge group, in lower case letters, e.g. su(2), to distinguish a local gauge symmetry vs
global symmetry. We can consider a pure Yang-Mills theory, which means only gauge
fields and no matter representations, or we can include matter fields. The matter fields
could be scalars (e.g. the Higgs in the SM) ¢ or Fermions v (as in QED, these are Dirac
if m # 0 or, for m = 0, we can have left and / or right-handed chiral fermions — more
on this shortly). The matter fields are in representations of the gauge group, and the

most-discussed cases are the fundamental, anti-fundamental, and adjoint representations;
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for su(2) the fundamental and anti-fundamental are 2 = 2 (like j = 3 for the rotation
group), and the 3 adjoint representation (like j = 1 for rotations).

Consider e.g. su(N) with ¢¢ in the fundamental, where o« = 1,2 is a spinor index
and ¢ = 1,...N is the su(N) color index; the Lorentz index « goes for the ride and will
usually be suppressed. The su(N) gauge symmetry takes )¢ — U¢y(z)y? where we sum
the repeated color index. Here U(z) is an element of the SU(NN) group manifold (e.g. for
SU(2) it’s = 83): UTU =1 and det U = 1, and we can thus write it as the exponential of
Hermitian, traceless N x N matrices; there are N? — 1 of these and for the rotation group
these are the 3 generators J. An anti-fundamental can be written as v, which transforms
as 1;(: — U*dczﬁd and UTU means that 0 is invariant and det U = 1 means that €., .y
and €“1°N are invariant. For SU(2), the fundamental and anti-fundamental are related
by e = €catp?.

e We now want to write a covariant derivative, such that 1 — U takes D ¢ —
DL]U@ZJ =UD,, so Df{ =UD,U™'. Let’s write it as D, = 9, — iA4,, (this changes the
sign of A, vs my convention for u(1), to agree with the notation for the non-Abelian case
in other references), with A, = A, T“. Note that, when we write D, = 9, —iA,, it should
be understood that A, = A} Ty, with R the representation of the field that it acts on. For
example, if acting on something that is invariant, i.e. the trivial rep, then T3 = 0 and
D,, — 0, (similar to how in GR the V, notation has implicit the connection, which depend
on what it acts on, with e.g. V, — 0, if acting on a scalar). For u(1), the generator
T# — q, the electric charge of the operator on which it acts. For su(2), if acting on the rep
labeled by I (analogous to j for the rotation group), then e.g. D), = 9,1a141 +iA%TS, 4,
where from now on I will not explicitly write the 1 or the R reminder that D, depends on
the representation of the field on which it acts.

We want Dg(Uv,ZJ) = UD,y, ie. 0,U — iAgU = —iUA,. So AL] =Uo, U +
UA, UL As a check, for U(1) with U = €' this gives Ag = d,a+ A,,. More generally,
taking U = exp(ia), with o = a®T* and expand for an infinitesimal o*, get 64, = D, a =
Ouor + [iA,, 0. Writing DS = 0, —iA%, (Dyo)® = 0,0 — Abac fobe.

The gauge field strength tensor corresponds to a commutator of covariant derivatives

(analogous to the Riemann curvature tensor):
F,, =iD,,D))=0,A, —0,A, —i[A,,A)|=F, = FﬁyTa,
a a a abc Ab pc
Fo, = 0,A% — 9,A% + oAb AC.
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F,, is in the adjoint rep, transforming as F,, — ng = UFWU_l. For U =
exp(ia®l®) and o infinitesimal, get dF),, = i[a, F},,], which is the statement that F),,
transforms in the adjoint rep. The Lagrangian density must of course be gauge invari-
ant, and the gauge kinetic terms come from the quadratic casimir (squaring and taking
the trace): £ D —Q—;Tr(FHVF“”). E.g. for G = SU(2), we can use a notation in-
spired by the rotation group, where the ;7 = 1 adjoint is denoted by a 3d vector, so

— —

F= BMEV — Byffu + /TM X /Ty, and the gauge kinetic terms are —4—§1]2FW - Fr



