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? Week 2 reading: Tong chapter 1, and start chapter 2.

http://www.damtp.cam.ac.uk/user/tong/gaugetheory.html

• Continue from last time, with Dirac quantization. Rather than having a Dirac

string, we can achieve ∇ · ~B 6= 0, and still have ~B = ∇ × ~A, via having ~A defined only in

patches. This will also be a warmup for the ’t Hooft Polyakov monopole, to be discussed

later. Consider ANφ = qm
4πr

(1−cos θ)
sin θ , which is singular at θ = π, and ASφ = − qm

4πr
(1+cos θ)

sin θ ,

which is singular at θ = 0; both lead to ~B = qmr̂/4πr
2, corresponding to a charge qm

magnetic monopole at the origin,
∫
S2
~B · d~a =

∫
S2 F = qm.

We can try to get an everywhere well defined gauge field by taking Aµ = ANµ in

the 0 ≤ θ < π/2 Northern hemisphere, and Aµ = ASµ in the π ≥ θ > π/2 Southern

hemisphere. They disagree at θ = π/2, where they’re patched together, but that’s OK

because the difference is a gauge transformation: ANφ − ASφ = 1
r sin θ∂φα = ∇φα with

α = qmφ/2π. The only caveat is that the wavefunction must be single valued and since

ψ → e−iqeα/h̄ψ under a gauge transformation, the wavefunction in the patches differ by a

factor of e−iqeqmφ/2πh̄. This must be periodic under φ ∼= φ + 2π, i.e. α ∼= α + qm. This

gives another way to see Dirac quantization: under a gauge transformation ψ → e−iqeα/h̄ψ

and α ∼= α+ qm does nothing if qeqm ∈ 2πh̄Z.

• Summary: compact u(1)↔ gauge parameter α lives on a circle, α ∼= α+qm. Allows

for magnetic monopoles and implies that electric charge is quantized. So when I discuss

u(1) gauge theory, I usually assume that it is compact and thus that charges are quantized.

It fits with observation, and it is required in grand unification scenarios where the u(1)Y

gauge group of the SM is embedded in a larger compact group, like su(5) or so(10). If the

charge is quantized, we can rescale Aµ such that the basic quanta of charge has qe = 1,

taking qm = 2πh̄ for the minimum magnetic monopole. We usually set h̄ = 1, but it’s nice

to note that the quantization is a quantum effect, quantized in units of h̄.

• Since L ⊃ −qeφ + q
c~v · ~A, ~p = γm~v + q

c
~A. The conserved angular momentum of a

charge qe in the background of a monopole is ~L = ~r× ~p− qeqm
4π r̂. Then ~L · r̂ = − qeqm4π and

quantization of angular momentum Lz ∈ 1
2 h̄Z gives Dirac quantization again.

• The 2-form F/2π is called c1(F ), the first Chern class, where the name comes from

mathematics. In general, cn(F ) comes from the F∧n term in Taylor expanding eF/2π with

wedge products. The second Chern class is thus c2(F ) = 1
8π2F ∧ F . The normalizations
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are nice in terms of quantization conditions. For example, for the magnetic monopole at

the origin
∫
S
F = qm and if we pick qe = 1 then Dirac quantization gives

∫
S

(F/2πh̄) ∈ Z.

• It is illuminating to consider QFTs on a compact spacetime, e.g. suppose that x1

is a circle, x1 ∼ x1 + 2πR1. Under x1 → x1 + 2πR1, ψ → e−iqe
∮
A1dx

1/h̄ψ. Note that

A1 ∼ A1 + h̄/qeR1, the gauge field becomes periodic with radius inverse to the radius of

space. Can consider A1 → A1 + ∂1α with α = x1h̄/qeR1: it winds the circle in space

around the circle in gauge transformations with non-trivial π1(S1). So A1 → A1 + h̄/qeR

are related by a (large) gauge transformation, and thus physically equivalent.

Suppose now that x2 is also a circle, x2 ∼ x2 + 2πR2, and A2 ∼ A2 + h̄/R2. Now we

can take e.g. A2 = h̄nx1/2πqeR1R2, so as we wind once around the x1 cycle of the space

torus we wind n ∈ Z times around the A2 cycle of the gauge field’s torus. This leads to

B3 = h̄/2πqeR1R2 and thus magnetic flux through the torus
∫
T 2 F = 2πnh̄/qe. Setting

qe = 1 and h̄ = 1, this is a configuration with
∫
c1(F ) = n.

• Recall dimensional analysis, use ∆ to denote operator’s mass dimension, so ∆(S) =

0, ∆(L) = 4, ∆(Dµ) = ∆(∂µ) = ∆(Aµ) = 1. ∆(Fµν) = 2. The gauge kinetic term is

L ⊃ − 1
4e2FµνF

µν so ∆(e2) = 0; a non-zero beta function is a quantum correction to this.

• There is another gauge and Lorentz invariant operator with ∆ = 4, i.e.

εµνρσFµνFρσ = 8 ~E · ~B = 2∂µ(εµνρσAνFρσ).

We can add it to L with coefficient, in a normalization to be made precise below, called θ,

which is a dimensionless (even including quantum loops) coupling constant. Superficially,

such a term is a total derivative, but it’s not a total derivative of something gauge invariant.

In the form notation, where F = dA is a 2-form, we are discussing the 4-form F ∧ F =

d(A ∧ dA). It looks exact, and then Gauss’ law gives
∫
M4

F ∧ F =
∫
∂M4

A ∧ dA.

But that is not the whole story. Just as a magnetic monopole can have
∫
S
F = qm 6=

0, with S a closed surface ∂S = 0, despite seeming to have F = dA, likewise we can

have
∫
M4

F ∧ F 6= 0 even if ∂M4 = 0. As with a magnetic monopole, the integral is a

quantized, topological invariant, associated with non-trivial winding of the gauge field. For

the Abelian U(1) case, it is a product of monopole numbers, whereas for the non-Abelian

case it is an independent invariant (the second Chern class vs first Chern class squared).

To illustrate it, suppose that take spacetime M4 to be a Euclidean T 4, with all xµ ∼
xµ+2π/Rµ (this has ∂M4 = 0). Then we can do an analogous construction for the electric

field E3 via e.g. A3 = h̄n′x0/2πqeR0R3 and then
∫
T ′
2
dx0dx3E3 = 2πh̄cn′/qe. Combining

2



the ~E and ~B, this configuration has
∫
T 4

~E · ~B = N(4π2h̄2c/q2
e) with k = nn′ ∈ Z. k is called

the instanton number. It is the integrated second Chern class. Instantons require a lot more

discussion, and they generally do not play much of a role in u(1) gauge theory (modulo UV

modifications). We will discuss them much more soon, in the context of non-Abelian gauge

theories, where they are associated with non-trivial maps of S3
∞ → S3 ∼= SU(2) ⊂ G. The

θ term’s role in the u(1) case is primarily if there is a boundary.

• Now consider adding the term ∼ ~E · ~B to L, taking care with the normalization:

Sθ,u(1) =
θ

4π2h̄c

∫
d4x~E · ~B =

θ

32π2h̄c

∫
d4xεµνρσFµνFρσ = θ

∫
1
2c1(F ) ∧ c1(F ).

In terms of forms, F = 1
2Fµνdx

µ ∧ dxν = 2πc1(F ) and F ∧ F = 1
4ε
µνρσFµνFρσ ∗ d4x (e.g.

can take F = B3dx1 ∧ dx2 + E3dx3 ∧ dt and then F ∧ F = 2 ~E · ~Bdx1 ∧ dx2 ∧ dx3 ∧ dt).
When we discuss the non-Abelian case, we will instead take

Sθ,non−Abelian ⊃ θ
∫
c2(F ), c2(F ) = 1

2Tr
F

2π
∧ F

2π
.

It turns out that, in both cases, Sθ can only take quantized values, and the normalization

is chosen to make the quantization condition nice: Sθ ∈ h̄θk with k ∈ Z an integer (called

the instanton number). Then eiS/h̄ in the path integral is periodic in θ ∼= θ + 2π.

θ is a parameter (coupling constant) called the theta angle, since it is a 2π periodic.

Since P and T sent θ → −θ, the theta parameter violates P and T separately, but preserves

PT and CPT (of course, since the theory is Lorentz invariant). Note that both θ = 0 and

θ = π preserve P and T ; there are some interesting aspects to these two values.
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