215¢, 4/1/20 Lecture outline. (© Kenneth Intriligator 2020.
* Week 1 reading: Tong chapter 1, and start chapter 2.
http://www.damtp.cam.ac.uk/user/tong/gaugetheory.html

e Caution about conventions: for QED, my notation last time was D, = 0,, + igA,

1 -, : 7,
L5 = Fu PP + 0D —m)y > —A, ¥, with J* = gy,

The gauge fields do not have canonical kinetic term. To make it canonical, we take A, =
eflu and then D, = 9, + iqeflu. I will discuss charge quantization today, and then e.g.
q € Z whereas e could be the charge of the electron. The EOM is 0, F*" = J", where
Frv = 9grAv — ¥ AM and JH = eJ" = eqpyH1p; these are fairly standard conventions. But
the gauge transformation has a minus sign: it’s ) — e ")) with A, — A, + 0,0

An alternative notation is to take AJ“" = —Affd. Then the gauge transformation is
Y — et1(®)y) with AR — ALY + 0, which looks nice, and D¢ = (9, — iqgA},*")y.
Then F#¥me% = —F* and we can either redefine J#* with a minus sign to get Maxwell’s
equations to look the same, or leave J" alone and end up with £ > +A7¢“.J#. The latter
notation is often used in the context of non-Abelian gauge fields.

Another notational issue in the non-Abelian case, which I mentioned last time, is
whether to take [T'%,T%] = ife*°T*, with the familiar i from the angular momentum
commutation relations, or to take T¢ = T%™% and then [['®7ew, Thnew] = fabepenew,
Then the generators are e.g. anti-Hermitian, rather than Hermitian, for SU(N). I will
mostly use the Hermitian generator notation.

An object 1 in the fundamental rep transforms as ¢¥» — U1, and an object O in the
adjoint rep transforms as O — UOQU~!. In the Lie algebra, the adjoint is represented by
(T%)" = —ifab¢ (in the notation where 7% are Hermitian). E.g. for SU(2) with fab¢ = eabe
this leads to the standard j = 1 matrix elements of J* = AT*. (HW to check these.)

e This seems like a good time to mention the connection (also in the technical sense)
with differential forms. The following is just a brief sketch, to give a flavor of how it applies
in the case of gauge theories. It is useful to occasionally use this language and notation.

A function e.g. a(x) is called a O-form. The differential operator d takes p forms to
p + 1 forms, e.g. do = J,adz" is a 1-form. One forms that can be written as d of a zero
form are called exact, so da is an example of an exact 1-form. Forms that are annihilated
by d are called closed. Now d* = 8,0, dz" A dz¥ = 0, because the wedge product of two

one-forms is odd under interchange whereas the partial derivatives commute; so all exact
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forms are closed. But not all closed forms are exact; closed forms modulo exact forms are
called cohomology.

We can also write A = A, dz" as a 1-form, and gauge invariance is the statement that
physics doesn’t care if we shift it by any exact 1-form. The field strength tensor can be
written as a 2-form F' = F),, dx" A dz”, where again the wedge product of two one-forms
is odd under exchange, fitting with the fact that Fj,, = —F,,. The Maxwell’s equations
that state there are no magnetic charges (as far as we know, and we will consider magnetic
monopoles shortly) say that F' is a closed form: dF = 8>\Fm,da:>‘ Adxt N\ dz” = 0. We
locally solve that by writing F' as an exact form: F' = dA, and gauge invariance of F' under
A — A+ da follows from d? = 0. In cases with magnetic flux (e.g. a solenoid, or in the
vortex strings of the Abelian Higgs model that you might have met in a HW assignment
last quarter), then actually dF' # 0. It is still sometimes, useful to locally write F' = dA,
but with an A that has something that makes it globally ill-defined or having jumps, e.g.
in polar coordinates we can write d¢ as something that looks like an exact 1-form, but
integrating it around a closed counter that encircles the origin gives 27 rather than 0; this
happens because d¢ is ill-defined at the origin.

Now F'AF ~ etP9F,, F,,vol where vol = dz® A dx' A dz? A dz? is the spacetime
volume 4-form. F' A F' is a topological 4-form that can be integrated over spacetime. By
contrast F,, F*vol ~ F' A\ xF where * is called the Hodge dual, which takes a p form to
a D — p form in D dimensions (here D = 4) by contracting indices with an epsilon tensor,
«FH = Frv = 2etP? F o (which differs from F), by E — B and B — —E). There are
some hidden factors of the metric in writing F' A xF' so it is not topological.

e There are various versions of a u(1) gauge theory that differ by global considerations.
A basic issue is whether the u(1) group manifold is really a circle (compact), or the real
line. If it is a circle, the charges must be rational and we can normalize things such that
they are integers. If we only see quantized electric charges (as in the real world E&M), the
group can be either compact or non-compact — we need more information to distinguish
the two cases. If we later find an irrational electric charge, we then know that it must be
the non-compact case. If instead we find a magnetic monopole, then we know that it must
be the compact case: compact — magnetic monopoles — charge quantization. If the u(1)
unifies into a non-Abelian group (we will discuss an su(2) example soon), then we know
that it must be the compact case.

As a warmup and reminder of the Aharanov-Bohm effect, suppose that there is an

infinitesimally thin solenoid along the 2 axis, so B = ®§(z)d(y)2, where ® is the magnetic
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flux in the solenoid. By Stoke’s law, fo A-di = ® if C circles the solenoid, and we can
take e.g. A = (®/217)p = V(®p/27). So A is almost pure gauge, but not quite given
that ¢ is only locally defined and has a 27 jump upon encircling the Z axis.

To simplify things, suppose that a particle of charge ¢ is restricted to live on a ring
of radius » = R, which encircles the flux ®. The Lagrangian is L = %mR%ﬁQ + %(f),
where 6 = q®. The last term is superficially a total derivative, and indeed it is topological
because of that — e.g. it drops out of the EL equations of motion — but it is not trivial
because ¢ ~ ¢+ 27m. Get py = OL/d¢ = mR2p+ % and H = ﬁ(pqg - %)2. In QM, we
quantize via py — —ids. The py eigenstates are ¥, (¢) = (¢|n) = ==

vV2mR
ﬁ(n — %)2; note that this spectrum is

2

invariant under 8 — 6 4 27. Indeed, if we try to eliminate the almost-pure-gauge A by a
gauge transformation A — A + Va with a = —®¢ /27 then 1 — o' = €9?/27¢), Under
¢ — ¢ + 2m, the original v is invariant but 1)’ — €*%4)’. This shows that @ can affect the

physics only 0 ¢ 27Z, and that 0 ~ 6 + 2w. The 6 here will have similarities with the 6

e? with Do = M.
The v, (¢) are energy eigenstates, with E,, =

parameter in gauge theory.

Dirac understood the above effect and argued (decades before Aharanov-Bohm), that
there can be magnetic monopoles, which could be imagined as being the endpoints of
fictional, Dirac string solenoids, and that the pretend string will be unobservable if the
corresponding 6 € 2nZ, which is Dirac’s quantization condition on electric and magnetic
charges. Again, consider QM for simplicity, and since the wavefunction 9 ~ e*S with
S D — [ qA,dz" moving the particle along some path C takes 1) — exp(—iq fo A, dx* ).
If the path is closed, 1) — exp(iq fC A- dZ)1y. If there is a magnetic monopole somewhere,
then V- B = gm0 (¥ — To) and we can then only locally define A. Using Gauss’ law,
fo:as A-d7 = fs E-dc?, but there are two choices of S (e.g. for the equator we can pick the
Northern or Southern hemisphere). The two choices differ by | S S—BV B-di = fv V-BdV,
so if there is a magnetic monopole inside V' we get ¢ A dT is ambiguous by an additive

shift of ¢,,. This ambiguity does not affect ¢ as long as ¢.q,, € 2whZ.



