
215c, 4/1/20 Lecture outline. c© Kenneth Intriligator 2020.

⋆ Week 1 reading: Tong chapter 1, and start chapter 2.

http://www.damtp.cam.ac.uk/user/tong/gaugetheory.html

• Caution about conventions: for QED, my notation last time was Dµ = ∂µ + iqAµ

L ⊃ −
1

4e2
FµνF

µν + ψ̄(i /D −m)ψ ⊃ −AµJ
µ, with Jµ = qψ̄γµψ.

The gauge fields do not have canonical kinetic term. To make it canonical, we take Aµ =

eÂµ and then Dµ = ∂µ + iqeÂµ. I will discuss charge quantization today, and then e.g.

q ∈ Z whereas e could be the charge of the electron. The EOM is ∂µF̂
µν = Ĵµ, where

F̂µν = ∂µÂν − ∂νÂµ and Ĵµ = eJµ = eqψ̄γµψ; these are fairly standard conventions. But

the gauge transformation has a minus sign: it’s ψ → e−iqα(x)ψ with Aµ → Aµ + ∂µα.

An alternative notation is to take Anew
µ = −Aold

µ . Then the gauge transformation is

ψ → e+iqα(x)ψ with Anew
µ → Anew

µ + ∂µα, which looks nice, and Dµψ = (∂µ − iqAnew
µ )ψ.

Then Fµν,new = −Fµν and we can either redefine Jµ with a minus sign to get Maxwell’s

equations to look the same, or leave Jµ alone and end up with L ⊃ +Anew
µ Jµ. The latter

notation is often used in the context of non-Abelian gauge fields.

Another notational issue in the non-Abelian case, which I mentioned last time, is

whether to take [T a, T b] = ifabcT c, with the familiar i from the angular momentum

commutation relations, or to take T a = iT a,new and then [T a,new, T b,new] = fabcT c,new.

Then the generators are e.g. anti-Hermitian, rather than Hermitian, for SU(N). I will

mostly use the Hermitian generator notation.

An object ψ in the fundamental rep transforms as ψ → Uψ, and an object O in the

adjoint rep transforms as O → UOU−1. In the Lie algebra, the adjoint is represented by

(T a)bc = −ifabc (in the notation where T a are Hermitian). E.g. for SU(2) with fabc = ǫabc

this leads to the standard j = 1 matrix elements of Ja = h̄T a. (HW to check these.)

• This seems like a good time to mention the connection (also in the technical sense)

with differential forms. The following is just a brief sketch, to give a flavor of how it applies

in the case of gauge theories. It is useful to occasionally use this language and notation.

A function e.g. α(x) is called a 0-form. The differential operator d takes p forms to

p+ 1 forms, e.g. dα = ∂µαdx
µ is a 1-form. One forms that can be written as d of a zero

form are called exact, so dα is an example of an exact 1-form. Forms that are annihilated

by d are called closed. Now d2 ≡ ∂µ∂νdx
µ ∧ dxν = 0, because the wedge product of two

one-forms is odd under interchange whereas the partial derivatives commute; so all exact
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forms are closed. But not all closed forms are exact; closed forms modulo exact forms are

called cohomology.

We can also write A = Aµdx
µ as a 1-form, and gauge invariance is the statement that

physics doesn’t care if we shift it by any exact 1-form. The field strength tensor can be

written as a 2-form F = Fµνdx
µ ∧ dxν , where again the wedge product of two one-forms

is odd under exchange, fitting with the fact that Fµν = −Fνµ. The Maxwell’s equations

that state there are no magnetic charges (as far as we know, and we will consider magnetic

monopoles shortly) say that F is a closed form: dF ≡ ∂λFµνdx
λ ∧ dxµ ∧ dxν = 0. We

locally solve that by writing F as an exact form: F = dA, and gauge invariance of F under

A → A + dα follows from d2 = 0. In cases with magnetic flux (e.g. a solenoid, or in the

vortex strings of the Abelian Higgs model that you might have met in a HW assignment

last quarter), then actually dF 6= 0. It is still sometimes, useful to locally write F = dA,

but with an A that has something that makes it globally ill-defined or having jumps, e.g.

in polar coordinates we can write dφ as something that looks like an exact 1-form, but

integrating it around a closed counter that encircles the origin gives 2π rather than 0; this

happens because dφ is ill-defined at the origin.

Now F ∧ F ∼ ǫµνρσFµνFρσvol where vol = dx0 ∧ dx1 ∧ dx2 ∧ dx3 is the spacetime

volume 4-form. F ∧ F is a topological 4-form that can be integrated over spacetime. By

contrast FµνF
µνvol ∼ F ∧ ∗F where ∗ is called the Hodge dual, which takes a p form to

a D− p form in D dimensions (here D = 4) by contracting indices with an epsilon tensor,

∗Fµν ≡ F̃µν ≡ 1
2ǫ

µνρσFρσ (which differs from Fµν by ~E → ~B and ~B → −~E). There are

some hidden factors of the metric in writing F ∧ ∗F so it is not topological.

• There are various versions of a u(1) gauge theory that differ by global considerations.

A basic issue is whether the u(1) group manifold is really a circle (compact), or the real

line. If it is a circle, the charges must be rational and we can normalize things such that

they are integers. If we only see quantized electric charges (as in the real world E&M), the

group can be either compact or non-compact – we need more information to distinguish

the two cases. If we later find an irrational electric charge, we then know that it must be

the non-compact case. If instead we find a magnetic monopole, then we know that it must

be the compact case: compact → magnetic monopoles → charge quantization. If the u(1)

unifies into a non-Abelian group (we will discuss an su(2) example soon), then we know

that it must be the compact case.

As a warmup and reminder of the Aharanov-Bohm effect, suppose that there is an

infinitesimally thin solenoid along the ẑ axis, so ~B = Φδ(x)δ(y)ẑ, where Φ is the magnetic
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flux in the solenoid. By Stoke’s law,
∮
C
~A · d~x = Φ if C circles the solenoid, and we can

take e.g. ~A = (Φ/2πr)φ̂ = ~∇(Φφ/2π). So ~A is almost pure gauge, but not quite given

that φ is only locally defined and has a 2π jump upon encircling the ẑ axis.

To simplify things, suppose that a particle of charge q is restricted to live on a ring

of radius r = R, which encircles the flux Φ. The Lagrangian is L = 1
2
mR2φ̇2 + θ

2π
φ̇,

where θ ≡ qΦ. The last term is superficially a total derivative, and indeed it is topological

because of that – e.g. it drops out of the EL equations of motion – but it is not trivial

because φ ∼ φ+2π. Get pφ = ∂L/∂φ̇ = mR2φ̇+ θ
2π

and H = 1
2mR2 (pφ−

θ
2π

)2. In QM, we

quantize via pφ → −i∂φ. The pφ eigenstates are ψn(φ) = 〈φ|n〉 = 1√
2πR

einφ, with pφ = n.

The ψn(φ) are energy eigenstates, with En = 1
2mR2 (n − θ

2π
)2; note that this spectrum is

invariant under θ → θ + 2π. Indeed, if we try to eliminate the almost-pure-gauge ~A by a

gauge transformation ~A → ~A + ∇α with α = −Φφ/2π then ψ → ψ′ = eiθφ/2πψ. Under

φ → φ + 2π, the original ψ is invariant but ψ′ → eiθψ′. This shows that θ can affect the

physics only θ /∈ 2πZ, and that θ ∼ θ + 2π. The θ here will have similarities with the θ

parameter in gauge theory.

Dirac understood the above effect and argued (decades before Aharanov-Bohm), that

there can be magnetic monopoles, which could be imagined as being the endpoints of

fictional, Dirac string solenoids, and that the pretend string will be unobservable if the

corresponding θ ∈ 2πZ, which is Dirac’s quantization condition on electric and magnetic

charges. Again, consider QM for simplicity, and since the wavefunction ψ ∼ eiS with

S ⊃ −
∫
qAµdx

µ moving the particle along some path C takes ψ → exp(−iq
∫
C
Aµdx

µ)ψ.

If the path is closed, ψ → exp(iq
∮
C
~A · d~x)ψ. If there is a magnetic monopole somewhere,

then ∇ · ~B = qmδ
3(~x − ~x0) and we can then only locally define ~A. Using Gauss’ law,

∮
C=∂S

~A ·d~x =
∫
S
~B ·d~a, but there are two choices of S (e.g. for the equator we can pick the

Northern or Southern hemisphere). The two choices differ by
∫
S−S′=∂V

~B·d~a =
∫
V

∇· ~BdV ,

so if there is a magnetic monopole inside V we get
∮
~A · d~x is ambiguous by an additive

shift of qm. This ambiguity does not affect ψ as long as qeqm ∈ 2πh̄Z.
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