4/30/19 Lecture outline
* Reading: Zwiebach chapters 4-7.

e Recall from last time:
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The condition S = 0 gives the Euler-Lagrange equations
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For open strings, S = 0 requires [ dr[0X “P7]5° = 0, which requires for each p index
either of the Dirichlet (fixed) or Neumann (free) BCs, at each end:
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Dirichlet (1,04) =0 — IXH(1,04) =0,

Neumann P (7,0.) = 0.

Exploit (7,0) — (77, 0’) reparameterization invariance to pick useful “gauges”, to sim-

plify the above equations. We will eventually choose such that we can impose constraints
X-X'=0 X?24X?=0, ie (XxX)=0 (1)

In this case, we have
1 . 1 /

™ _ XM o _ _ XM 9
& 2/ & 2na’ 2)

and then the EOM is simply a wave equation:
(02 = 95)X" =0. (3)

Start with static gauge: 7 =t, so X* = (¢, %) and X * = (0, X').
e In static gauge, let ds = |dX|tzconst = |6UX| |do| be the length element of the string

for o varying over do at fixed t = 7. Note that 95X is a unit vector, which is spacelike since
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it is along do, i.e. along the string. The transverse velocity to the string is the component
of §,X that is perpendicular to this unit vector: ¥, = 0; X X — (&JZ -0 )?)8 X.

e Note that (X-X')2-X2(X")? = (£)2(c?—v?), s0 Sng has Lyg = —Tp [ ds/1 — v} /2.
This fits with Lye; pp = —mcm. Note that

Pcru . _E (OSX atX)X“ + (C — (at ) )OSXH

= -2/
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2 do V1—v2/c2

e free, Neuman BCs, Py for the 4 = 0 component implies that endpoints move

PTH =

transversely, 0. X - X = 0, so v, = 9. The condition P? =0 at the endpoints implies
that the speed of light, v = ¢, for the free (Neuman) BCs.

e Step 2 (Z, chapter 7): we can choose ¢ such that 9,X -8, X = 0 along entire string
(we saw it above for Neumann endpoints). The interpretation is that we take the timelike
and spacelike vectors X* and X "M o be orthogonal. This gives v, = ¥ = X along the
entire string. Then P™* = TO ds Tey0 XH and PO = —Toy~ 19, XH, with v = 1/@

Now consider the p = O component of the EOM: 0,P™"* = —0,P?", which for =0
gives that (Tp/ c)j—iv is a constant of the motion. Indeed this is proportional to the energy
of an element of string. In a HW you will show that the string Hamiltonian is indeed
H = [Tods/\/1—v2 /2.

Now the space components of the EOM can be written as pefr0:0 = Os (Teffﬁs)z),
with Terp = To/v and preps = Toy/c2.

e Since fll—j’y is a constant, we can choose our ¢ parameterization to set it equal to 1.
So (22)2 + ¢=2v? = 1. This can be written as the constraint: (8,X)% + (0x,X)? = 1.

do
e Summary: choose o parameterization such that

ds B dE
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(Using H = [Tods/\/1 —v? /c? and 9;(ds/\/1 —v? /c?) = 0.) The last equation above is

equivalent to (9, X)2 + ¢2(8,X)2 = 1. With this worldsheet gauge choice,

0, X -0, X =0 and do =

T T°
P = C—gatxu = 5(ed), P =T, X" = (0,~Tod, X).
We can write this as
DTH LXM DPIH _C_QXM/ (4)
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and then the EOM is simply a linear wave equation, and we also need to impose the
constraints:

(02 —29HXr =0, (X+£X)2=0. (5)
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e Solution of the EOM for open string with free (N) BCs at each end. Write the
solution of the EOM as X (t,0) = %(ﬁ(et +0)+ G(ct —0)). The BC at ¢ = 0 gives
F'(ct) = G'(ct), which implies G = F + const, and the constant can be absorbed into F
so X(t,0) = %(ﬁ(ct-i—a) + F(ct — o)) where the open string has o € [0, 0] and (1) implies
that \%\2 =1, and X'|epgs = 0 implies F(u+ 201) = F(u) + 2017 /c. Note F(u) is
the position of the 0 = 0 end at time u/c. Then show that ¥y is the average velocity of
any point ¢ on the string over time interval 207 /c. Observing motion of ¢ = 0 end over
that At, together with E, gives motion of string for all t. Example from book: X (t,o =
0) = £(coswt,sinwt). Find F(u) = ZL(cosmu/oy,sinTu/oy), with 0y = 0. |‘é—5\2 =1 gives

{=2c/w=2E/nTy. Finally, X(t,0) = Z- cos(no/o1)(cos(mct /o), sin(mct/o1)).



