
5/28/19 Lecture outline

⋆ Reading: Zwiebach chapters 11, 12

• Recall from last time: quantize the point particle in light cone gauge by taking the

independent operators (xI , x−
0 , p

I , p+), with [xI , pJ ] = iηIJ and [x−
0 , p

+] = iη−+ = −i.

These commutators are for either S or H picture, with the operators being functions of

τ in the H picture. The remaining variables are defined by x+(τ) = p+τ/m2, x−(τ) =

x−
0 + p−τ/m2, p− = (pIpI + m2)/2p+ (the first two are explicitly τ dependent even

in the S picture). The Hamiltonian is ∼ p−, which generates ∂
∂x+ translations. Since

∂
∂τ

= p+

m2

∂
∂x+ ↔ p+

m2 p
− the Hamiltonian is

H =
p+p−

m2
=

1

2m2
(pIpI +m2).

Verify e.g.

i
d

dτ
pµ = [pµ, H] = 0, i

dxI

dτ
= [xI , H] = i

pI

m2
,

reproducing the correct EOM. Likewise, verify ẋ−
0 = 0 and ẋ+ = ∂τx

+ = p+/m2.

The momentum eigenstates are labeled by |p+, pI〉 and these are also energy eigenstates,

H|p+, pI〉 = 1
2m2 (p

IpI +m2)|p+, pI〉.
Connect the quantized point particle with the excitations of scalar field theory via

|p+, pI〉 ↔ a†
p+,pI |Ω〉.

The S.E. of the quantum point particle wavefunction maps to the classical scalar field

equations, e.g. in light cone gauge:

(i∂τ − 1

2m2
(pIpI +m2))φ(τ, p+, pI) = 0

is either the quantum S.E. of the point particle or the classical field equations of a scalar

field.

(Aside: the light cone is here used as a trick to get to “second quantization.” “First

quantization” is what you learn the first time you study (non-relativisitic) QM: replace

coordinates and momenta with operators, and Poisson brackets with commutators. Second

quantization is for field theory, replacing the fields and their conjugate momenta with

operators, and their PBs with commutators, leading to multi-particle states. Here light-

cone first quantization of the point particle leads to a Schrodinger equation that agrees
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with the classical EOM of a light-cone field theory, which we then need to quantize again

to get second quantization.

• We now repeat similar steps for the relativistic NG open string. Recall that we

imposed constraints (Ẋ ±X ′)2 = 0 to get

Pσµ = − 1

2πα′
Xµ′

, Pτµ =
1

2πα′
Ẋµ.

The solution of the string EOM (with Neumann BCs at the ends) is then

XI(τ, σ) = xI
0 +

√
2α′αI

0τ + i
√
2α′

∑
n6=0

1

n
αI
n cosnσe−inτ . (1)

where αµ
−n ≡ αµ∗

n (to make Xµ real) and it’s also convenient to define αµ
0 ≡

√
2α′pµ. Then

Ẋµ ±Xµ′

=
√
2α′

∞∑
n=−∞

αµ
ne

−in(τ±σ).

Recall that in light cone gauge we had X+ = βα′p+τ and p+ = 2πPτ+/β (again,

β = 2 for open strings and β = 1 for closed strings). The constraints gave

√
2α′α−

n ≡ 1

p+
L⊥
n , L⊥

n = 1
2

∞∑
m=−∞

αI
n−mαI

m.

In light cone gauge, much as with the point particle, the independent variables are

(XI(σ), x−
0 ,PτI(σ), p+). In the H picture the capitalized ones depend (implicitly) on τ

too. The commutation relations are

[XI(σ),PτJ(σ′)] = iηIJδ(σ − σ′), [x−
0 , p

+] = −i.

The Hamiltonian is taken to be

H = 2α′p+p− = 2α′p+
∫ π

0

dσPτ− = πα′

∫ π

0

dσ(PτIPτI +XI′

XI′

(2πα′)−2)

Can write H = L⊥
0 since L⊥

0 = 2α′p+p−. This H properly yields the expected time

derivatives, e.g. ẊI = 2πα′PτI .

In terms of (1), the needed commutators are ensured by

[αI
m, αJ

n] = mηIJδn+m,0.
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Also, as before, we define αI
0 ≡

√
2α′pI . Now define αµ

n>0 =
√
naµn and αµ

−n = aµ∗n
√
n to

rewrite the above as

[aIm, aJ
†

n ] = δm,nη
IJ . (2)

• The transverse light cone coordinates can be described by

Sl.c. =

∫
dτdσ

1

4πα′
(ẊIẊI −XI′

XI′

).

Gives correct PτI = ∂L/∂ẊI and correct H =
∫
dσ(PτIẊI − L).

WritingXI(τ, σ) = qI(τ)+2
√
α′

∑∞
n=1 q

I
N (τ)n−1/2 cosnσ and plugging into the action

above gives

S =

∫
dτ [

1

4α′
q̇I q̇I +

∞∑
n=1

(
1

2n
q̇Inq̇

I
n − n

2
qInq

I
n)]

and

H = α′pIpI +
∞∑

n=1

n

2
(pInp

I
n + qInq

I
m).

A bunch of harmonic oscillators. Relate to (1) and (2), showing that the am can be

interpreted as the usual harmonic oscillator annihilation operators.

• Summary: we fix X+ to be simply related to τ , find that the XI are given by simple

harmonic oscillators, and X− is a complicated expression, fully determined in terms of the

transverse direction quantities:

X+(τ, σ) = 2α′p+τ =
√
2α′α+

0 τ . For X− recall expansion, with
√
2α′α−

n = 1
p+L

⊥
n ,

where L⊥
n ≡ 1

2

∑
p α

I
n−pα

I
p is the transverse Virasoro operator. Recall [αI

m, αJ
n] =

mδIJδm+n,0. There is an ordering ambiguity here, only for L⊥
0 :

L⊥
0 = 1

2α0α0 +
1
2

∞∑
p=1

αI
−pα

I
p +

1
2

∞∑
p=1

αI
pα

I
−p.

The ordering in the last terms need to be fixed, so the annihilation operator αp is on

the right, using αI
pα

I
−p = αI

−pα
I
p + [αI

p, α
I
−p], which gives

L⊥
0 = α′pIpI +

∞∑
n=1

naI†n aIn,

where the normal ordering constant has been put into

2α′p− =
1

p+
(L⊥

0 + a), a = 1
2(D − 2)

∞∑
p=1

p.
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This leads to

M2 =
1

α′
(a+

∞∑
n=1

naI†n aIn).

The divergent sum for a is regulated by using ζ(s) =
∑∞

n=1 n
−s and analytically continuing

to get ζ(−1) = −1/12. So

a = − 1

24
(D − 2).
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