
6/7/18 Lecture outline

⋆ Reading: Zwiebach chapter 12.

• Last time: we completed the quantization of the open string, finding D = 26 and

H = 2α′p+p− = L⊥
0 − 1, and the states are

|λ〉 =
∞∏

n=1

25∏

I=2

(aI†n )λn,I |p+, ~pT 〉.

These states are eigenstates of

M2 =
1

α′
(−1 +N⊥), N⊥ ≡

∞∑

n=1

naI†n a
I
n,

with eigenvalues

M2 =
1

α′
(−1 +N⊥), N⊥ =

∑

n

∑

I

nλn,I .

The groundstate is tachyonic (!). The first excited state is a massless spacetime vector

with D − 2 polarizations, i.e. a massless gauge field, like the photon (but in D = 26)!

The tachyon is related to the fact that the D25 brane is unstable, it decays to the

closed string vacuum. The closed bosonic string is also unstable, as we’ll see next time.

These instabilities can be cured by adding fermions and considering the superstring. Then

the critical spacetime dimension is D = 10.

The eigenstates satisfy the worldsheet SE:

i
∂

∂τ
|λ〉 = H|λ〉 = (L⊥

0 − 1)|λ〉.

Writing x+ = 2α′p+τ , this becomes

(i
∂

∂x+
− 1

2p+
(pIpI +M2))φλ(x

+, p+, τ),

which is the KG (or generalization) wave equation for the corresponding field in spacetime.

• Now consider closed string case. Recall gauge conditions n ·X = α′(n · p)τ , n · p =

2πn · Pτ , which yielded the constraints (Ẋ ± X ′)2 = 0 and then the EOM were simply

(∂2τ −∂2σ)Xµ = 0. For the closed string, this means that Xµ(τ, σ) = Xµ
L(τ+σ)+X

µ
R(τ−σ).

The general solutions can then be written as

Xµ
R(v) =

1
2
xLµ
0 +

√
1
2
α′αµ

0v + i
√

1
2
α′

∑

n6=0

αµ
n

n
e−inv ,
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and a similar expression for Xµ
L, with modes α̃µ

n. Since X
µ(τ, σ+2π) = Xµ(τ, σ), α̃µ

0 = αµ
0 .

Computing Pµµ = Ẋµ/2πα′ then yields αµ
0 =

√
1
2
α′pµ.

The theory is quantized by taking [XI(τ, σ),PτJ(τ, σ′)] = iδ(σ−σ′)ηIJ , which implies

that

[αI
m, α

J
n] = mδm+n,0η

IJ , [α̃I
m, α̃

J
n] = mδm+n,0η

IJ

with no commutator between the left and right movers. It’s now very similar to the open

string case, but with the two sets of decoupled oscillators for the left and right movers.

We define

(ẊI +X
′I)2 ≡ 4α′

∑

n

L̃⊥
n e

−in(τ+σ),

and a similar expansion for (ẊI−X ′I)2 and L⊥
n , involving τ−σ. Then L⊥

n = 1
2

∑
p α

I
pα

I
n−p,

and L⊥
0 = α′

4 p
IpI +N⊥. The X− are given in terms of these much as in the open string

case,
√
2α′α−

n = 2L⊥
n /p

+, with a similar expression for the left movers. The worldsheet

Hamiltonian is H = L⊥
0 + L̃⊥

0 − 2 and M2 = −p2 = 2p+p− − pIpI = 2
α′
(N⊥ + Ñ⊥ − 2).

The closed string states are given by acting with left and right moving creation oper-

ators on |p+, pI〉, with the constraint that N⊥ = Ñ⊥ (because of translation symmetry in

shifting σ). In summary, the spectrum of states is given by

|λ, λ̃〉 = [

∞∏

n=1

D−1∏

I=2

(aI†n )λn,I ][

∞∏

n=1

D−1∏

I=2

(ãI†n )λ̃n,I ]|pµ〉

M2 = −p2 = 2(N⊥ + Ñ⊥ − 2)/α′, N⊥ =

∞∑

n=1

D−1∑

I=1

nλn,I , N⊥ =

∞∑

n=1

D−1∑

I=1

nλ̃n,I ,

(1)

where there is a requirement that N⊥ = Ñ⊥ to have σ translation invariance.

The state with N⊥ = 0 is the bosonic closed string tachyon. Those with N⊥ = 1 are

given by a (D − 2)2 matrix of indices in the transverse directions, and these are massless.

The symmetric traceless part is the graviton, the antisymmetric tensor is a gauge field Bµν

which is an analog of Aµ, and the trace part is φ, called the “dilaton.”

• Let’s count the states by defining f(x) = Trstatesx
α′M2

. Find

fos(x) = x−1
∞∏

n=1

1

(1− xn)24

where we set D − 2 = 24. Similarly, for the closed string case, we have

fclosed(x, x̄) = fos(x)fos(x̄),
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where we need to project out those states with different powers of x and x̄.

• Consider the closed, bosonic string on a circle, X25 ∼ X25+2πR. If we were dealing

with particles rather than strings, we know what would happen: the momentum in the

circle direction is quantized (by ψ ∼ eip·x being set equal to itself when going around the

circle) as

p25 =
n

R
, n = 0,±1,±2 . . . .

For a big circle, these are closely spaced together, and for a small circle they are widely

separated. That’s why it’s hard to experimentally rule out the absence of tiny, rolled up,

extra dimensions: it could just take more energy than we can make presently to excite one

of the n 6= 0 “Kaluza-Klein modes.”

Now we’re going to describe something bizarre about strings: there is a symmetry,

called T-dualtiy, which makes the physics invariant under R ↔ α′/R. This is strange: a

very big circle is physically indistinguishable from a very small circle! The reason is that,

in addition to momentum, there are string winding modes, and T-duality exchanges them.

For a big circle, the momentum modes are light and the winding modes are heavy, and

for a tiny circle they’re reversed, but same physics. Smallest possible effective distance,

R =
√
α′.

The winding number is given by X(τ, σ + 2π) − X(τ, σ) = m(2πR). We then have

X = XL +XR with

XL(τ + σ) = const.+ 1
2α

′(p+ w)(τ + σ) + oscillators,

XR(τ − σ) = const+ 1
2α

′(p− w)(τ − σ) + oscillators.

Here

p =
n

R
, w =

mR

α′
.

The T-duality symmetry comes from the symmetry (pL, pR) → (pL,−pR), where

pL =
n

R
+
mR

α′
, pR =

n

R
− mR

α′
.

Also, to have X(τ, σ+ 2π) ∼ X(τ, σ) + 2πRm, we need N⊥ − Ñ⊥ = nm.

• Let’s now consider some aspects of string thermodynamics. The number of string

states grows very rapidly with excitation number, and it turns out that this puts an upper

limit on the temperature, beyond which the partition function would not converge.
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Before getting into thermodynamics, let’s count string states. Recall that we counted

states of the open bosonic string via

fos(x) = Trstatesx
α′M2

=

(
1

x1/24
∏∞

n=1(1− xn)

)(D−2)

≡
∞∑

N=0

pD−2(N)xN−(D−2)/24.

We saw that D = 26, but let’s keep it as a parameter for the moment. Here pD−2(N) is the

number of distinct partitions of N into arbitrary numbers of non-negative integers, each of

which can have D− 2 labels. This corresponds to how many choices of λI,n there are such

that
∏D−1

I=2

∏∞
n=1(a

I†
n )λI,n has N⊥ =

∑
n

∑
I nλI,n = N . Let’s consider p1(N) = p(N)

as an illustration: p(5) = 7, p(10) = 42, find p(N) grows rapidly with N . The large N

behavior of p(N) was studied long ago by number theorists Hardy and Ramanujan:

p(N ≫ 1) ≈ 1

4N
√
3
exp(2π

√
N

6
).

Can also show:

pb(N ≫ 1) ≈ 1√
2

(
b

24

)(b+1)/2

N−(b+3)/4 exp(2π

√
Nb

6
).

Note the appearance of 24 in this number theory formula, which will be related to D−2 =

24 in string theory. In fact, these formula were derived by relating the above generating

functions to the Dedekind eta function:

η(τ) ≡ eiπτ/12
∞∏

n=1

(1− e2πinτ ).

Note that this function, defined long ago by mathematicians, nicely allows us to write

fos(x = e2πiτ ) = η(τ)−(D−2).

An important property of the eta function (both for math, and for string theory!) is

η(−1/τ) = (−iτ)1/2η(τ),

and this allows us to relate the x→ 1 limit, which is relevant for extracting p(N ≫ 1), to

another limit: x→ 1 is τ → 0i, which can be related to −1/τ → i∞.
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Setting τ = iτ2, the above generating functions start to resemble partition functions,

with H = α′M2. (Actually, they are partition functions, but on the worldsheet for the

moment.)

fos = Trstatese
−2πτ2α

′M2

=
∞∑

N=0

pD−2(N)e−2πτ2(N−1).

For large N , we have M2 ≈ N/α′ and, taking E = M , we have
√
N =

√
α′E. The

entropy of string states with energy E is then

S(E) = k lnΩ(E) = k ln p24(N =
√
α′E) ≈ k4π

√
α′E.

Then
1

kT
=

1

k

∂S

∂E
= 4π

√
α′ ≡ 1

kTH
,

where TH is the Hagedorn temperature.

To fully compute the spacetime partition function, we must write E =
√
~p2 +M2 and

do the integral over momentum, V
∫
dD−1p/(2πh̄)D−1. Find that Zstring(T ) has a pole as

T → TH : Zstring ∼ C/(T − TH), with C a constant.

• Superstrings! The bosonic string has fields XI(τ, σ), which are D − 2 worldsheet

scalars. Now we introduce D − 2 worldsheet fermions

ΨR(τ − σ)I , ΨI
L(τ + σ).

Here R and L are for right and left moving, and I = 2 . . .D−2 (spacetime vector indices).

The light cone gauge action is

S =
1

4πα′

∫
dτdσ

(
ẊIẊI −XI′

XI′

+ΨI
R(∂τ + ∂σ)Ψ

I
R +ΨI

L(∂τ − ∂σ)Ψ
I
L

)
.

Note that the bosons XI have the usual quadratic in derivatives terms (like L = 1
2mẋ

2)

whereas the fermions Ψ have linear in derivatives terms. The fermion and its action can

roughly be thought of as the square-root of a boson and its action. The terms in the action

above is the 2d worldsheet version of the Dirac equation action. The classical equations of

motion from the Euler Lagrange equations are just (∂τ +∂σ)ΨR = 0 and (∂τ −∂σ)ΨL = 0,

which are solved by ΨR = ΨR(τ − σ) and ΨL = ΨL(τ + σ).

There are two choices of boundary conditions for left movers, and similarly two choices

for right movers:

ΨI(τ, σ + 2π) = ±ΨI (τ, σ), + : Ramond, − : Nevu-Schwarz.
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In the NS sector we have

ΨI
NS ∼

∞∑

n=−∞

bI
n+

1
2

e−i(n+
1
2
)(τ−σ).

In the R sector we have

ΨI
R ∼

∞∑

n=−∞

dPn e
−in(τ−σ).

In the NS sector we have

ΨI
NS ∼

∞∑

n=−∞

bI
n+

1
2

e−i(n+
1
2 )(τ−σ).

In the R sector we have

ΨI
R ∼

∞∑

n=−∞

dPn e
−in(τ−σ).

The modes satisfy

{bIr, bJs } = δr+s,0δ
IJ , {dIn, dJm} = δn+m,0δ

IJ ,

where {A,B} ≡ AB + BA is the anti-commutator, reflecting the fermionic nature of the

modes.

The NS sector states are

|λ, ρ〉NS =
D−2∏

I=2

(aI†n )λn,I

D−1∏

J=2

∏

r=
1
2 ,

3

2
...

(bJ−r)
ρr,J |NS〉 ⊗ |p〉,

where the ρr,J are either zero or one (Fermi statistics).

The R sector states are

|λ, ρ〉R =

D−2∏

I=2

∏

n

(aI†n )λn,I

D−1∏

J=2

∞∏

m=1

(dJ−m)ρm,J |RA〉 ⊗ |p〉,

The upshot in this case is that D = 10 spacetime dimensions is needed. The mass-squared

operator in the NS sector is

α′M2 = N⊥ + 1
2(D − 2)(− 1

12
− 1

24
),
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where the −1/12 was seen in the bosonic case, and the −1/24 is the analog coming from

reordering the br. As in the bosonic case, the commutator [M−I ,M−J ] = 0 determines

the spacetime dimension, here to be D = 10. Similarly, in the R-sector, we have

α′M2 = N⊥, N⊥ =

∞∑

p=1

pa†Ip a
I
p +

∞∑

m=1

mdI−md
I
m.

The NS spectrum generating function is

fNS(x) =
1√
x

∞∏

n=1



1 + xn−
1
2

1− xn




8

.

The R sector spectrum generating function is

fR±(x) = 8
∞∏

n=1

(
1 + xn

1− xn

)8

where 8 accounts for the ground state degeneracy associated with dI0, in either the R+ or

the R− sector. We should also GSO project the NS sector, i.e. throw away states with

(−1)F = −1 to get the NS+ states, with generating function

fNS+(x) =
1

2
√
x




∞∏

n=1



1 + xn−
1
2

1− xn




8

−



1− xn−
1
2

1− xn




8

 .

This projects out the tachyon – nice! Moreover, the states in fR± are spacetime fermions,

whereas those in fNS,+ are spacetime bosons, and their spectrum is degenerate, thanks to

the identity fR±(x) = fNS+(x) (which was proven as a mathematical identity around 150

years before the superstring was even first thought of!).

• For closed superstrings we can take the NS+ sector for both left and right movers,

and the R− sector for both left and right movers; this is the IIB superstring. Or we could

take the NS+ sector for both left and right movers, and the R− sector for left movers and

the R+ sector for right movers; this is the IIA superstring.

The massless (NS+, NS+) states for both of these string theories consist of

b̃I
−

1
2

|NS〉L ⊗ bJ
−

1
2

|NS〉R ⊗ |p〉.

As in the bosonic case, these correspond to gµν ,, Bµν , φ.
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