
5/17/18 Lecture outline

⋆ Reading: Zwiebach chapter 9.

• Continue where we left off last time: recall (h̄ = c = 1 units, [α′] = 1/[T0] = L2)

LNG = − 1

2πα′

√

(Ẋ ·X ′)2 − (Ẋ)2(X ′)2,

and we have

Pτ
µ =

∂L
∂Ẋµ

= − 1

2πα′

(Ẋ ·X ′)X ′
µ − (X ′)2Ẋµ

√

(Ẋ ·X ′)2 − (Ẋ)2(X ′)2
,

and

Pσ
µ =

∂L
∂Xµ′

= − 1

2πα′

(Ẋ ·X ′)Ẋµ − (Ẋ)2X ′
µ

√

(Ẋ ·X ′)2 − (Ẋ)2(X ′)2
.

which we simplified by picking static gauge.

• Generalize static gauge (to eventually get to light cone gauge). Consider e.g. gauge

nµX
µ = λτ for time-like nµ. Static gauge is nµ = (1, 0, . . . , 0). Vary, nµdX

µ = λdτ , so

nµ is orthogonal to the string tangent at constant τ . We want dXµ along the string to be

spacelike (or null at isolated points, e.g. the Neumann open string endpoints).

For open strings in natural units we can take λ = 2α′(n · p).
Static gauge implies that nµPτµ is a constant. The generalization for general nµ is that

n·Pτ is a constant of the motion of the string worldsheet. This is not a reprarameterization

invariant statement - that is the point: we are using it to fix a gauge.

Using the EOM, this implies that n · Pσ is independent of σ and then can argue that

n · Pσ = 0.

More generally, it is convenient to write the gauge fixing conditions as

n · Pσ = 0, n ·X = βα′(n · p)τ, n · p =
2π

β
n · Pτ ,

where β = 2 for open strings and β = 1 for closed strings. These lead to

Ẋ ·X ′ = 0 Ẋ2 + c2X ′2 = 0. (1)

Pτµ =
1

2πα′
Ẋµ Pσµ = − c2

2πα′
Xµ′

, (2)

(∂2
τ − c2∂2

σ)X
µ = 0. (3)

• We will later focus on light cone gauge: nµ = (1/
√
2, 1/

√
2, 0, . . .). Introducing nµ

obscures the relativistic invariance in spacetime. Why would we want to do that? Well we
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wouldn’t, except that it happens to have some other benefits once we quantize the theory.

It gives a way to determine the spectrum without having to introduce unphysical states.

There is a covariant approach, but it requires introducing unphysical states (“ghosts”) and

then ensuring that they are projected out of the physical spectrum – doing this requires

sophisticated theory which is only taught at the advanced graduate student level, so we’ll

stick with the simpler (and in the end physically equivalent) light-cone gauge description.

• The general solution of the linear equations (3) is a superposition of Fourier modes

Xµ(τ, σ) = xµ
0 + 2α′pµτ + i

√
2α′

∞
∑

n6=0

1

n
αµ
ne

−inτ cosnσ,

where αµ
−n ≡ αµ∗

n (to make Xµ real) and it’s also convenient to define αµ
0 ≡

√
2α′pµ. Then

Ẋµ ±Xµ′

=
√
2α′

∞
∑

n=−∞

αµ
ne

−in(τ±σ).
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