5/1/13 Lecture outline

- \star Reading: Zwiebach chapter 6.
- Recall, $S_{string} = \int dt dx \mathcal{L}(\frac{\partial y}{\partial t}, \frac{\partial y}{\partial x})$, with momentum densities

$$\mathcal{P}^t = \frac{\partial \mathcal{L}}{\partial \dot{y}}, \qquad \mathcal{P}^x = \frac{\partial \mathcal{L}}{\partial y'}.$$

Least action gives the equations of motion

$$\frac{\partial \mathcal{P}^t}{\partial t} + \frac{\partial \mathcal{P}^x}{\partial x} = 0$$

 $S_{rel,part} = -mc \int ds + \frac{q}{c} \int A_{\mu} dx^{\mu}$, where the first term is the worldline length. For a string, we use the worldsheet area.

• For a string world-sheet, we need two parameters, ξ^a , a = 1, 2. The string trajectory is $x : \Sigma \to M$, where Σ is the 2d world-sheet, with local coordinates ξ^a , and M is the target space, with local coordinates x^{μ} . The worldsheet area element is $A = \int d^2 \xi \sqrt{|h|}$, where h_{ab} is the worldsheet metric, and |h| is its determinant. Suppose that the target space has metric $g_{\mu\nu}$, with space-time length e.g. $ds^2 = g_{\mu\nu}dx^{\mu}dx^{\nu}$. By writing $dx^{\mu} = \partial_a x^{\mu}d\xi^a$, we get

$$ds^{2} = g_{\mu\nu} \frac{dx^{\mu}}{d\xi^{a}} \frac{dx^{\nu}}{d\xi^{b}} d\xi^{a} d\xi^{b}, \qquad \text{so} \qquad h_{ab} = g_{\mu\nu} \frac{dx^{\mu}}{d\xi^{a}} \frac{dx^{\nu}}{d\xi^{b}},$$

where this h_{ab} is called the induced metric. So the worldsheet area functional is

$$A = \int d^2 \xi \sqrt{\det(g_{\mu\nu} \frac{dx^{\mu}}{d\xi^a} \frac{dx^{\nu}}{d\xi^b})}.$$

• For strings in Minkowski spacetime, we write it instead as $X^{\mu}(\tau, \sigma)$. There is also a needed minus sign, as the area element is $\sqrt{|g|}$, actually involves the absolute value of the determinant, and the determinant is negative (just like det $\eta = -1$). So

$$A = \int d\tau d\sigma \sqrt{\left(\frac{\partial X}{\partial \tau} \cdot \frac{\partial X}{\partial \sigma}\right)^2 - \left(\frac{\partial X}{\partial \tau}\right)^2 \left(\frac{\partial X}{\partial \sigma}\right)^2}$$

where the spacetime indices are contracted with the metric $g_{\mu\nu}$. To get an action with $[S] = ML^2/T$, we have

$$S_{Nambu-Goto} = -\frac{T_0}{c} \int_{\tau_i}^{\tau_f} d\tau \int d\sigma \sqrt{(\dot{X} \cdot X')^2 - (\dot{X})^2 (X')^2},$$

where we define $\dot{X}^{\mu} \equiv \frac{dx^{\mu}}{d\tau}$ and $X^{\mu\prime} \equiv \frac{\partial X^{\mu}}{\partial \sigma}$ and T_0 is the string tension, with $[T_0] = [F] = [ML/T^2]$.

The action is reparameterization invariant: can take $(\tau, \sigma) \to (\tau'(\tau, \sigma), \sigma'(\tau, \sigma))$ and get $S \to S$. Enormous symmetry/redundancy in choice of (τ, σ) ; can "fix the gauge" to some convenient choice, and the physics is completely independent of the choice.

• We can write S_{NG} in terms of the Lagrangian density

$$\mathcal{L}_{NG} = -\frac{T_0}{c} \sqrt{(\dot{X} \cdot X')^2 - (\dot{X})^2 (X')^2},$$

and we have

$$\mathcal{P}^{\tau}_{\mu} = \frac{\partial \mathcal{L}}{\partial \dot{X}^{\mu}} = -\frac{T_0}{c} \frac{(\dot{X} \cdot X') X'_{\mu} - (X')^2 \dot{X}_{\mu}}{\sqrt{(\dot{X} \cdot X')^2 - (\dot{X})^2 (X')^2}},$$

and

$$\mathcal{P}^{\sigma}_{\mu} = \frac{\partial \mathcal{L}}{\partial X^{\mu\prime}} = -\frac{T_0}{c} \frac{(\dot{X} \cdot X') \dot{X}_{\mu} - (\dot{X})^2 X'_{\mu}}{\sqrt{(\dot{X} \cdot X')^2 - (\dot{X})^2 (X')^2}}.$$

The condition $\delta S = 0$ gives the Euler-Lagrange equations

$$\frac{\partial \mathcal{P}^{\tau}_{\mu}}{\partial \tau} + \frac{\partial \mathcal{P}^{\sigma}_{\mu}}{\partial \sigma} = 0.$$

For the open string, $\delta S = 0$ also requires $\int d\tau [\delta X^{\mu} P^{\sigma}_{\mu}]_0^{\sigma_0} = 0$, which requires for each μ index either of the Dirichlet or Neumann BCs, at each end:

Dirichlet
$$\frac{\partial X^{\mu}}{\partial \tau}(\tau, \sigma_*) = 0 \quad \rightarrow \quad \delta X^{\mu}(\tau, \sigma_*) = 0,$$

Neumann $\mathcal{P}^{\sigma}_{\mu}(\tau, \sigma_*) = 0.$