4/24/13 Lecture outline

 \star Reading: Zwiebach chapters 4, 5.

• Nonrelativistic strings. $[T_0] = [F] = [E]/L = [\mu_0][v^2]$. Indeed, considering F = ma for an element dx of the string yields the string wave equation $\frac{\partial^2 y}{\partial x^2} - \frac{1}{v_0^2} \frac{\partial^2 y}{\partial t^2} = 0$, with $v_0 = \sqrt{T_0/\mu_0}$. Endpoints at x = 0 and x = a. Can choose Dirichlet or Neumann BCs at these points. With Dirichlet at each end, $y_n(x) = A_n \sin(n\pi x/a)$ and the general solution is $y(x,t) = \sum_n y_n(x) \cos \omega_n t$, where $\omega_n = v_0 n\pi/a$ (and the A_n are determined from the initial conditions, by Fourier transform).

The nonrelativistic string action is $S = \int dt L$ where L is the kinetic energy minus potential energy, which gives

$$S = \int dt \int dx \left(\frac{1}{2} \mu_0 \left(\frac{\partial y}{\partial t} \right)^2 - \frac{1}{2} T_0 \left(\frac{\partial y}{\partial x} \right)^2 \right),$$

which is a particular case of the more general action $S = \int dt dx \mathcal{L}(\frac{\partial y}{\partial t}, \frac{\partial y}{\partial x})$. We can then define the momentum density and corresponding spatial quantity

$$\mathcal{P}^t = \frac{\partial \mathcal{L}}{\partial \dot{y}}, \qquad \mathcal{P}^x = \frac{\partial \mathcal{L}}{\partial y'}.$$

The variation of the action is

$$\delta S = \int dt dx [\mathcal{P}^t \delta \dot{y} + \mathcal{P}^x \delta y'] = -\int dt dx [\frac{\partial \mathcal{P}^t}{\partial t} + \frac{\partial \mathcal{P}^x}{\partial x}] \delta y + \text{bndy terms}$$

and the action is made stationary, $\delta S = 0$, if the boundary terms vanish and if

$$\frac{\partial \mathcal{P}^t}{\partial t} + \frac{\partial \mathcal{P}^x}{\partial x} = 0,$$

which when applied to the above particular choice of action gives the usual wave equation. The boundary terms must also be set to zero, and they involve $\mathcal{P}^t \delta y$ at the time endpoints and $\mathcal{P}^x \delta y$ at the space endpoints. Neumann BCs is to set $\mathcal{P}^x = 0$ at the spatial endpoints (for all t), and Dirichlet BCs is to set $\delta y = 0$ (and thus $\mathcal{P}^t = 0$) at the spatial endpoints.

• The action for a relativistic point particle of mass m is $S = -mc \int ds = -mc^2 \int dt \sqrt{1 - v^2/c^2}$. This gives $\vec{p} = \partial_{\vec{v}} = \gamma m \vec{v}$ and $H = \vec{p} \cdot \vec{v} - L = \gamma m c^2$, both of which are constants of the motion (thanks to the time and spatial translation invariance).

• Reparametrization invariance: write $x_{\mu}(\tau)$, and can change worldline parameter τ to an arbitrary new parameterization $\tau'(\tau)$, and the action is invariant. To see this use $S = -mc \int \sqrt{-\eta_{\mu\nu} \frac{dx^{\mu}}{d\tau} \frac{dx^{\nu}}{d\tau}}$ and change $\frac{dx^{\mu}}{d\tau} = \frac{dx^{\mu}}{d\tau'} \frac{d\tau'}{d\tau}$ and note that $S \to S$. The Euler Lagrange equations of motion are $\frac{dp_{\mu}}{d\tau} = 0$.