4/8/13 Lecture outline

 \star Reading: Zwiebach chapters 1 and 2.

• Metric convention (sigh..) $x^{\mu} = (ct, x, y, z), x_{\mu} = (-ct, x, y, z) = \eta_{\mu\nu} x^{\mu}, \eta_{\mu\nu} \eta^{\nu\lambda} =$ δ_{μ}^{λ} . Define $ds^2 = -dx^{\mu}dx_{\mu}$.

• Δs^2 for time-like, light-like, space-like separated events. Statement of causality principle: cause's effects only in the time-like future.

• Statement of relativity principle: physics is indistinguishable among all inertial frames. If one frame is inertial, the other inertial frames have linearly related coordinates, $x^{\mu'} = \Lambda^{\mu'}_{\ \nu} x^{\nu}$, where the transformations must preserve $ds^2 = 0$; that is enough to show that they preserve any $ds^2 = ds'^2$; that is enough to show that they preserve all 4-scalar products. This restricts the Lorentz transformations: if we write $\eta_{\mu\nu}$ as a matrix, the Lorentz transformations satisfy $\eta = \Lambda^T \eta \Lambda$. The Lorentz transformations consist of rotations and boosts (for a total of 3+3=6 independent generators). For the case of boosts, e.g. $\int \frac{ct'}{t}$ x^{\prime} $\overline{ }$ = $\begin{pmatrix} \gamma & -\gamma\beta \\ -\gamma\beta & \gamma \end{pmatrix} \begin{pmatrix} ct \\ x \end{pmatrix}$ $\overline{ }$.

Aside on the Lorentz transformations (question from lecture): writing transformation in matrix notation, need to account for upper vs lower indices, e.g. $\eta^{\mu\nu}$ vs $\eta_{\mu\nu}$.

• Light cone coordinates: $x^{\pm} = \frac{1}{\sqrt{2}}$ $\frac{1}{2}(x^0 \pm x^1)$. The bad: spoils rotational symmetry. The good: will make it easier to quantize string theory (avoids having to discuss here more advanced alternatives, which do not require going to the light cone coordinates). $-ds^2 = -2dx^+dx^- + dx_2^2 + dx_3^2 = -\hat{\eta}_{\mu\nu}dx^{\mu}dx^{\nu}.$ $a_{\pm} = -a^{\mp}.$

• $p^{\mu} = (E/c, p_x, p_y, p_z)$, with $p_{\mu}p^{\mu} = -m^2c^2$. p^{μ} transforms as a Lorentz 4-vector, $p^{\mu'} = \Lambda^{\mu'}_{\nu} p^{\nu}$. Proper time: $ds^2 = c^2 dt_p^2 = c^2 dt^2 (1 - \beta^2)$. $u^{\mu} = c dx^{\mu}/ds = dx^{\mu}/dt_p =$ $\gamma(c, \vec{v})$, and $u_{\mu}u^{\mu} = -c^2$. A massive point particle has $p^{\mu} = mu^{\mu}$. Massless particles, like the photon, have p^{μ} with $p^{\mu}p_{\mu} = 0$.

• Quantum mechanics: replace $p^{\mu} = (H/c, \vec{p}) \rightarrow -i\hbar \partial^{\mu}$. Free particle wavefunction $\psi \sim \exp(ip \cdot x/\hbar); p_\mu x^\mu \equiv p \cdot x$ is Lorentz invariant.

• Light cone coordinates: take $p^{\pm} = \frac{1}{\sqrt{2}}$ $\frac{1}{2}(p^0 \pm p^1) = -p_{\mp}$. So $i\hbar \partial_{x^+} \rightarrow -p_{+} = E_{lc}/c$, i.e. $p^{-} = E_{lc}/c$.