5/20/13 Lecture outline

- \star Reading: Zwiebach chapters 9 and 10.
- Recall from last time: by choice of (τ, σ) , can pick (will take $n_{\mu} = (1/\sqrt{2}, 1/\sqrt{2}, 0, ...)$)

$$
n \cdot \mathcal{P}^{\sigma} = 0, \qquad n \cdot X = \beta \alpha'(n \cdot p)\tau, \qquad n \cdot p = \frac{2\pi}{\beta}n \cdot \mathcal{P}^{\tau},
$$

where $\beta = 2$ for open strings and $\beta = 1$ for closed strings. These lead to $(\alpha' \equiv 1/2\pi T_0 \hbar c)$

$$
\dot{X} \cdot X' = 0 \qquad \dot{X}^2 + c^2 X'^2 = 0. \tag{1}
$$

$$
\mathcal{P}^{\tau\mu} = \frac{1}{2\pi\alpha'} \dot{X}^{\mu} \qquad \mathcal{P}^{\sigma\mu} = -\frac{c^2}{2\pi\alpha'} X^{\mu'},\tag{2}
$$

$$
(\partial_{\tau}^{2} - c^{2} \partial_{\sigma}^{2}) X^{\mu} = 0. \tag{3}
$$

The general solution of the linear equations (3) is a superposition of Fourier modes

$$
X^{\mu}(\tau,\sigma) = x_0^{\mu} + 2\alpha' p^{\mu} \tau + i \sqrt{2\alpha'} \sum_{n \neq 0}^{\infty} \frac{1}{n} \alpha_n^{\mu} e^{-in\tau} \cos n\sigma,
$$

where $\alpha_{-n}^{\mu} \equiv \alpha_n^{\mu*}$ (to make X^{μ} real) and it's also convenient to define $\alpha_0^{\mu} \equiv$ $\sqrt{2\alpha'p^{\mu}}$. Then

$$
\dot{X}^{\mu} \pm X^{\mu'} = \sqrt{2\alpha'} \sum_{n=-\infty}^{\infty} \alpha_n^{\mu} e^{-in(\tau \pm \sigma)}.
$$

• In light cone gauge take $n_{\mu} = (1/\sqrt{2}, 1/\sqrt{2}, 0, \ldots)$. Then $n \cdot X = X^+$ and $n \cdot p = p^+,$ so our constraint gives $X^+ = \beta \alpha' p^+ \tau$ and $p^+ = 2\pi \mathcal{P}^{\tau+}/\beta$ (again, $\beta = 2$ for open strings and $\beta = 1$ for closed strings. Also note, $X'^{+} = 0$ and $\dot{X}^{+} = \beta \alpha' p^{+}$); of course, p^{+} is a constant of the motion. Since the constraints give $(\dot{X} \pm X')^2 = -2(\dot{X}^+ \pm X'^{+})(\dot{X}^- \pm \dot{X}^+)$ X'^{-}) + $(\dot{X}^{I} \pm X'^{I})^{2} = 0$, we can write this as $\partial_{\tau} X^{-} \pm \partial_{\sigma} X^{-} = \frac{1}{\beta \alpha'} \frac{1}{2p^{+}} (\dot{X}^{I} \pm X^{I'})^{2}$, where I are the transverse directions. This leads to

$$
\sqrt{2\alpha'}\alpha_n^- = \frac{1}{p^+}L_n^{\perp}, \qquad L_n^{\perp} = \frac{1}{2}\sum_{m=-\infty}^{\infty} \alpha_{n-m}^I \alpha_m^I.
$$

This means that there is no dynamics in X^- , other than the zero mode. For $n = 0$, using $\alpha_0^- = \sqrt{2\alpha'} p^-$ get $2\alpha' p^+ p^- = L_0^{\perp}$. Light cone gauge allows us to make \dot{X}^+ a constant, and to solve for the derivatives of X^- (without having to take a square root). Finally, note that the string has

$$
M^{2} = -p^{2} = 2p^{+}p^{-} - P^{I}p^{I} = \frac{1}{\alpha'} \sum_{n=1}^{\infty} \alpha_{n}^{I*} \alpha_{n}^{I}.
$$

See that all classical states have $M^2 \geq 0$.

• Consider classical scalar field theory, with $S = \int d^D x \left(-\frac{1}{2}\right)$ $\frac{1}{2}\eta^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi - \frac{1}{2}m^2\phi^2$). The EOM is the Klein-Gordon equation

$$
(\partial^2 - m^2)\phi = 0, \qquad \partial^2 \equiv -\frac{\partial^2}{\partial t^2} + \nabla^2
$$

The Hamiltonian is $H = \int d^{D-1}x \left(\frac{1}{2}\Pi^2 + \frac{1}{2}\right)$ $\frac{1}{2}(\nabla \phi)^2 + \frac{1}{2}m^2 \phi^2$, where $\Pi = \partial \mathcal{L}/\partial(\partial_0 \phi) = \partial_0 \phi$. Take e.g. $D = 1$ and get SHO with $q \to \phi$ and $m \to 1$ and $\omega \to m$.

Classical plane wave solutions: $\phi(t, \vec{x}) = ae^{-iEt + i\vec{p}\cdot\vec{x}} + c.c.,$ where $E = E_p$ $\sqrt{\vec{p}^2 + m^2}$, and the +c.c. is to make ϕ real. Letting $\phi(x) = \int \frac{d^D p}{(2\pi)^D} e^{ip \cdot x} \phi(p)$, the reality condition is $\phi(p)^* = \phi(-p)$ and the EOM is $(p^2 + m^2)\phi(p) = 0$.