5/10/13 Lecture outline

 \star Reading: Zwiebach chapter 7,8.

• Last time: use special choice of τ and σ such that the relativistic string EOM + constraint are

$$(\partial_{\tau}^2 - c^2 \partial_{\sigma}^2) X^{\mu} = 0, \qquad (\dot{X} \pm c X')^2 = 0.$$
 (1)

• Solution of the EOM for open string with free BCs at each end: imposing first at $\sigma = 0$ gives $\vec{X}(t,\sigma) = \frac{1}{2}(\vec{F}(ct+\sigma) + \vec{F}(ct-\sigma))$ where the open string has $\sigma \in [0,\sigma_1]$ and the constraint implies that $|\frac{d\vec{F}(u)}{du}|^2 = 1$, and $\vec{X'}|_{ends} = 0$ implies $\vec{F}(u+2\sigma_1) = \vec{F}(u) + 2\sigma_1 \vec{v_0}/c$. Note $\vec{F}(u)$ is the position of the $\sigma = 0$ end at time u/c. Then show that $\vec{v_0}$ is the average velocity of any point σ on the string over time interval $2\sigma_1/c$. Observing motion of $\sigma = 0$ end over that Δt , together with E, gives motion of string for all t. Example from book: $\vec{X}(t,\sigma) = 0$ and $\vec{F}(u) = \frac{\sigma_1}{\pi}(\cos \pi u/\sigma_1, \sin \pi u/\sigma_1)$, with $\vec{v_0} = 0$. $|\frac{d\vec{F}}{du}|^2 = 1$ gives $\ell = 2c/\omega = 2E/\pi T_0$. Finally, $\vec{X}(t,\sigma) = \frac{\sigma_1}{\pi}\cos(\pi\sigma/\sigma_1)(\cos(\pi ct/\sigma_1), \sin(\pi ct/\sigma_1))$.

• Next topic: symmetries and conservation laws. Recall charge conservation $\partial_{\mu} j^{\mu} = 0$, which is related to gauge invariance, $\delta \mathcal{L} = 0$ under $\delta A_{\mu} = \partial_{\mu} f$. Recall Noether's theorem for $L(q, \dot{q})$, if continuous symmetry δq_i then $p_i \delta q_i$ is conserved. For $S = \int d\xi^0 \dots d\xi^k \mathcal{L}(\phi^a, \partial_\alpha \phi^a)$, a symmetry $\delta \phi^a$ implies a conserved current $j^\alpha = \frac{\partial \mathcal{L}}{\partial (\partial_\alpha \phi^a)} \delta \phi^a$.