5/6/13 Lecture outline

- \star Reading: Zwiebach chapter 7.
- Recall from last time:

$$\mathcal{L}_{NG} = -\frac{T_0}{c} \sqrt{(\dot{X} \cdot X')^2 - (\dot{X})^2 (X')^2},$$

and we have

$$\mathcal{P}^{\tau}_{\mu} = \frac{\partial \mathcal{L}}{\partial \dot{X}^{\mu}} = -\frac{T_0}{c} \frac{(\dot{X} \cdot X') X'_{\mu} - (X')^2 \dot{X}_{\mu}}{\sqrt{(\dot{X} \cdot X')^2 - (\dot{X})^2 (X')^2}},$$

.

and

$$\mathcal{P}^{\sigma}_{\mu} = \frac{\partial \mathcal{L}}{\partial X^{\mu\prime}} = -\frac{T_0}{c} \frac{(\dot{X} \cdot X')\dot{X}_{\mu} - (\dot{X})^2 X'_{\mu}}{\sqrt{(\dot{X} \cdot X')^2 - (\dot{X})^2 (X')^2}}$$

The condition $\delta S = 0$ gives the Euler-Lagrange equations

$$\frac{\partial \mathcal{P}^{\tau}_{\mu}}{\partial \tau} + \frac{\partial \mathcal{P}^{\sigma}_{\mu}}{\partial \sigma} = 0.$$

Exploit $(\tau, \sigma) \to (\tau', \sigma')$ reparameterization invariance to pick useful "gauges", to simplify the above equations. We will discuss choices such that we can impose constraints

$$\dot{X} \cdot X' = 0$$
 $\dot{X}^2 + X'^2 = 0.$ (1)

In this case, we have

$$\mathcal{P}^{\tau\mu} = \frac{1}{2\pi\alpha'} \dot{X}^{\mu} \qquad \mathcal{P}^{\sigma\mu} = -\frac{1}{2\pi\alpha'} X^{\mu'}, \qquad (2)$$

and then the EOM is simply a wave equation:

$$(\partial_{\tau}^2 - \partial_{\sigma}^2)X^{\mu} = 0. \tag{3}$$

Step 1 (last time): Static gauge: pick $\tau = t$. Verify sign inside $\sqrt{\cdot}$ in this case: $X^{\mu'} = (0, \vec{X'}), \ \dot{X}^{\mu} = (c, \dot{\vec{X}}), \ \text{take e.g.} \ \dot{\vec{X}} = 0 \ \text{to get } \sqrt{\cdot} = c|\vec{X'}|.$ Express S in terms of $\vec{v_{\perp}} = \partial_t \vec{X} - (\partial_t \vec{X} \cdot \partial_s \vec{X}) \partial_s \vec{X}$ (with $ds \equiv |d\vec{X}|_{t=const} = |\partial_\sigma \vec{X}| |d\sigma|$), show $(\dot{X} \cdot X')^2 - \dot{X}^2 (X')^2 = (\frac{ds}{d\sigma})^2 (c^2 - v_{\perp}^2)$, to get $L = -T_0 \int ds \sqrt{1 - v_{\perp}^2/c^2}$. Also get

$$\mathcal{P}^{\sigma\mu} = -\frac{T_0}{c^2} \frac{(\partial_s \vec{X} \cdot \partial_t \vec{X}) \dot{X}^\mu + (c^2 - (\partial_t \vec{X})^2) \partial_s X^\mu}{\sqrt{1 - v_\perp^2/c^2}},$$
$$\mathcal{P}^{\tau\mu} = \frac{T_0}{c^2} \frac{ds}{d\sigma} \frac{\dot{X}^\mu - (\partial_s \vec{X} \cdot \partial_t \vec{X}) \partial_s X^\mu}{\sqrt{1 - v_\perp^2/c^2}}.$$

• Free, Neuman BCs, P^{σ}_{μ} for the $\mu = 0$ component implies that endpoints move transversely, $\partial_s \vec{X} \cdot \partial_t \vec{X} = 0$, so $\vec{v}_{\perp} = \vec{v}$. The condition $\vec{P}^{\sigma} = 0$ at the endpoints implies that the speed of light, v = c, for the free (Neuman) BCs.

• Step 2: can choose σ such that $\partial_{\sigma} \vec{X} \cdot \partial_t \vec{X} = 0$ along entire string (we saw it above for the endpoints). This gives $\vec{v}_{\perp} = \vec{v} \equiv \vec{X}$ along the entire string. Then $\mathcal{P}^{\tau\mu} = \frac{T_0}{c^2} \frac{ds}{d\sigma} \gamma \partial_t X^{\mu}$ and $\mathcal{P}^{\sigma\mu} = -T_0 \gamma^{-1} \partial_s X^{\mu}$, with $\gamma \equiv 1/\sqrt{1-v_{\perp}^2/c^2}$.

Now consider the $\mu = 0$ component of the EOM: $\partial_t \mathcal{P}^{\tau\mu} = -\partial_\sigma \mathcal{P}^{\sigma\mu}$, which for $\mu = 0$ gives that $(T_0/c)\frac{ds}{d\sigma}\gamma$ is a constant of the motion. Indeed this is proportional to the energy of an element of string. Now the space components of the EOM can be written as $\mu_{eff}\partial_t \vec{v}_\perp = \partial_s (T_{eff}\partial_s \vec{X})$, with $T_{eff} = T_0/\gamma$ and $\mu_{eff} = T_0\gamma/c^2$.

• Now note that since $\frac{ds}{d\sigma}\gamma$ is a constant, we can set it equal to 1. This can be written as the constraint: $(\partial_{\sigma}\vec{X})^2 + (\partial_{X_0}\vec{X})^2 = 1.$

• Summary: shoose σ parameterization such that

$$\partial_{\sigma} \vec{X} \cdot \partial_{\tau} \vec{X} = 0$$
 and $d\sigma = \frac{ds}{\sqrt{1 - v_{\perp}^2/c^2}} = \frac{dE}{T_0}$

(Using $H = \int T_0 ds / \sqrt{1 - v_{\perp}^2/c^2}$ and $\partial_t (ds / \sqrt{1 - v_{\perp}^2/c^2}) = 0$.) The last equation above is equivalent to $(\partial_{\sigma} \vec{X})^2 + c^{-2} (\partial_t \vec{X})^2 = 1$. With this worldsheet gauge choice,

$$\mathcal{P}^{\tau\mu} = \frac{T_0}{c^2} \partial_t X^\mu = \frac{T^0}{c^2} (c, \vec{v}_\perp), \qquad \mathcal{P}^{\sigma,\mu} = -T_0 \partial_\sigma X^\mu = (0, -T_0 \partial_\sigma \vec{X}).$$

We can write this as

$$\mathcal{P}^{\tau\mu} = \frac{1}{2\pi\alpha'} \dot{X}^{\mu} \qquad \mathcal{P}^{\sigma\mu} = -\frac{c^2}{2\pi\alpha'} X^{\mu'}, \tag{4}$$

and then the EOM is simply a linear wave equation, and we also need to impose the constraints:

$$(\partial_{\tau}^2 - c^2 \partial_{\sigma}^2) X^{\mu} = 0, \qquad (\dot{X} \pm X')^2 = 0.$$
 (5)

• Solution of the EOM for open string with free BCs at each end: imposing first at $\sigma = 0$ gives $\vec{X}(t,\sigma) = \frac{1}{2}(\vec{F}(ct+\sigma) + \vec{F}(ct-\sigma))$ where the open string has $\sigma \in [0,\sigma_1]$ and (1) implies that $|\frac{d\vec{F}(u)}{du}|^2 = 1$, and $\vec{X}'|_{ends} = 0$ implies $\vec{F}(u+2\sigma_1) = \vec{F}(u) + 2\sigma_1 \vec{v}_0/c$. Note $\vec{F}(u)$ is the position of the $\sigma = 0$ end at time u/c. Then show that \vec{v}_0 is the average velocity of any point σ on the string over time interval $2\sigma_1/c$. Observing motion of $\sigma = 0$ end over that Δt , together with E, gives motion of string for all t. Example from book: $\vec{X}(t,\sigma = 0) = \frac{\ell}{2}(\cos \omega t, \sin \omega t)$. Find $\vec{F}(u) = \frac{\sigma_1}{\pi}(\cos \pi u/\sigma_1, \sin \pi u/\sigma_1)$, with $\vec{v}_0 = 0$. $|\frac{d\vec{F}}{du}|^2 = 1$ gives $\ell = 2c/\omega = 2E/\pi T_0$. Finally, $\vec{X}(t,\sigma) = \frac{\sigma_1}{\pi}\cos(\pi\sigma/\sigma_1)(\cos(\pi ct/\sigma_1), \sin(\pi ct/\sigma_1))$.