5/6/13 Lecture outline

- \star Reading: Zwiebach chapter 7.
- Recall from last time:

$$
\mathcal{L}_{NG} = -\frac{T_0}{c} \sqrt{(\dot{X} \cdot X')^2 - (\dot{X})^2 (X')^2},
$$

and we have

$$
\mathcal{P}^{\tau}_{\mu} = \frac{\partial \mathcal{L}}{\partial \dot{X}^{\mu}} = -\frac{T_0}{c} \frac{(\dot{X} \cdot X')X'_{\mu} - (X')^2 \dot{X}_{\mu}}{\sqrt{(\dot{X} \cdot X')^2 - (\dot{X})^2 (X')^2}},
$$

and

$$
\mathcal{P}^{\sigma}_{\mu} = \frac{\partial \mathcal{L}}{\partial X^{\mu'}} = -\frac{T_0}{c} \frac{(\dot{X} \cdot X') \dot{X}_{\mu} - (\dot{X})^2 X'_{\mu}}{\sqrt{(\dot{X} \cdot X')^2 - (\dot{X})^2 (X')^2}}.
$$

The condition $\delta S = 0$ gives the Euler-Lagrange equations

$$
\frac{\partial \mathcal{P}^{\tau}_{\mu}}{\partial \tau} + \frac{\partial \mathcal{P}^{\sigma}_{\mu}}{\partial \sigma} = 0.
$$

Exploit $(\tau, \sigma) \rightarrow (\tau', \sigma')$ reparameterization invariance to pick useful "gauges", to simplify the above equations. We will discuss choices such that we can impose constraints

$$
\dot{X} \cdot X' = 0 \qquad \dot{X}^2 + X'^2 = 0. \tag{1}
$$

In this case, we have

$$
\mathcal{P}^{\tau\mu} = \frac{1}{2\pi\alpha'} \dot{X}^{\mu} \qquad \mathcal{P}^{\sigma\mu} = -\frac{1}{2\pi\alpha'} X^{\mu'}, \tag{2}
$$

and then the EOM is simply a wave equation:

$$
(\partial_{\tau}^{2} - \partial_{\sigma}^{2})X^{\mu} = 0.
$$
\n(3)

Step 1 (last time): Static gauge: pick $\tau = t$. Verify sign inside $\sqrt{\cdot}$ in this case: $X^{\mu'} = (0, \vec{X}'), \ \dot{X}^{\mu} = (c, \dot{\vec{X}}), \ \text{take e.g.} \ \ \dot{\vec{X}} = 0 \ \text{to get } \sqrt{\cdot} = c|\vec{X}'|. \ \text{Express } S \text{ in terms}$ of $\vec{v}_{\perp} = \partial_t \vec{X} - (\partial_t \vec{X} \cdot \partial_s \vec{X}) \partial_s \vec{X}$ (with $ds \equiv |d\vec{X}|_{t=const} = |\partial_\sigma \vec{X}| |d\sigma|$), show $(\dot{X} \cdot X')^2$ – $\dot{X}^2(X')^2 = (\frac{ds}{d\sigma})^2(c^2 - v_\perp^2)$, to get $L = -T_0 \int ds \sqrt{1 - v_\perp^2/c^2}$. Also get

$$
\mathcal{P}^{\sigma\mu} = -\frac{T_0}{c^2} \frac{(\partial_s \vec{X} \cdot \partial_t \vec{X}) \dot{X}^\mu + (c^2 - (\partial_t \vec{X})^2) \partial_s X^\mu}{\sqrt{1 - v_\perp^2/c^2}},
$$

$$
\mathcal{P}^{\tau\mu} = \frac{T_0}{c^2} \frac{ds}{d\sigma} \frac{\dot{X}^\mu - (\partial_s \vec{X} \cdot \partial_t \vec{X}) \partial_s X^\mu}{\sqrt{1 - v_\perp^2/c^2}}.
$$

• Free, Neuman BCs, P_{μ}^{σ} for the $\mu = 0$ component implies that endpoints move transversely, $\partial_s \vec{X} \cdot \partial_t \vec{X} = 0$, so $\vec{v}_\perp = \vec{v}$. The condition $\vec{P}^\sigma = 0$ at the endpoints implies that the speed of light, $v = c$, for the free (Neuman) BCs.

• Step 2: can choose σ such that $\partial_{\sigma}\vec{X}\cdot\partial_t\vec{X}=0$ along entire string (we saw it above for the endpoints). This gives $\vec{v}_\perp = \vec{v} \equiv \dot{\vec{X}}$ along the entire string. Then $\mathcal{P}^{\tau\mu} = \frac{T_0}{c^2}$ $\frac{T_0}{c^2}\frac{ds}{d\sigma}\gamma\partial_t X^\mu$ and $\mathcal{P}^{\sigma\mu} = -T_0 \gamma^{-1} \partial_s X^{\mu}$, with $\gamma \equiv 1/\sqrt{1 - v_\perp^2/c^2}$.

Now consider the $\mu = 0$ component of the EOM: $\partial_t \mathcal{P}^{\tau\mu} = -\partial_\sigma \mathcal{P}^{\sigma\mu}$, which for $\mu = 0$ gives that $(T_0/c)\frac{ds}{d\sigma}\gamma$ is a constant of the motion. Indeed this is proportional to the energy of an element of string. Now the space components of the EOM can be written as $\mu_{eff} \partial_t \vec{v}_{\perp} = \partial_s (T_{eff} \partial_s \vec{X}), \text{ with } T_{eff} = T_0/\gamma \text{ and } \mu_{eff} = T_0 \gamma / c^2.$

• Now note that since $\frac{ds}{d\sigma}\gamma$ is a constant, we can set it equal to 1. This can be written as the constraint: $(\partial_{\sigma}\vec{X})^2 + (\partial_{X_0}\vec{X})^2 = 1$.

 \bullet Summary: shoose σ parameterization such that

$$
\partial_{\sigma}\vec{X} \cdot \partial_{\tau}\vec{X} = 0
$$
 and $d\sigma = \frac{ds}{\sqrt{1 - v_{\perp}^2/c^2}} = \frac{dE}{T_0}$.

(Using $H = \int T_0 ds / \sqrt{1 - v_\perp^2/c^2}$ and $\partial_t (ds / \sqrt{1 - v_\perp^2/c^2}) = 0$.) The last equation above is equivalent to $(\partial_{\sigma}\vec{X})^2 + c^{-2}(\partial_t\vec{X})^2 = 1$. With this worldsheet gauge choice,

$$
\mathcal{P}^{\tau\mu} = \frac{T_0}{c^2} \partial_t X^{\mu} = \frac{T^0}{c^2} (c, \vec{v}_{\perp}), \qquad \mathcal{P}^{\sigma,\mu} = -T_0 \partial_\sigma X^{\mu} = (0, -T_0 \partial_\sigma \vec{X}).
$$

We can write this as

$$
\mathcal{P}^{\tau\mu} = \frac{1}{2\pi\alpha'} \dot{X}^{\mu} \qquad \mathcal{P}^{\sigma\mu} = -\frac{c^2}{2\pi\alpha'} X^{\mu'},\tag{4}
$$

and then the EOM is simply a linear wave equation, and we also need to impose the constraints:

$$
(\partial_{\tau}^{2} - c^{2} \partial_{\sigma}^{2}) X^{\mu} = 0, \qquad (\dot{X} \pm X')^{2} = 0.
$$
 (5)

• Solution of the EOM for open string with free BCs at each end: imposing first at $\sigma = 0$ gives $\vec{X}(t, \sigma) = \frac{1}{2}(\vec{F}(ct + \sigma) + \vec{F}(ct - \sigma))$ where the open string has $\sigma \in [0, \sigma_1]$ and (1) implies that $\left| \frac{d\vec{F}(u)}{du} \right|$ $\frac{\vec{F}(u)}{du}|^2 = 1$, and $\vec{X'}|_{ends} = 0$ implies $\vec{F}(u + 2\sigma_1) = \vec{F}(u) + 2\sigma_1 \vec{v}_0/c$. Note $F(u)$ is the position of the $\sigma = 0$ end at time u/c . Then show that \vec{v}_0 is the average velocity of any point σ on the string over time interval $2\sigma_1/c$. Observing motion of $\sigma = 0$ end over that Δt , together with E, gives motion of string for all t. Example from book: $\vec{X}(t, \sigma =$ $(0) = \frac{\ell}{2}(\cos \omega t, \sin \omega t)$. Find $\vec{F}(u) = \frac{\sigma_1}{\pi}(\cos \pi u/\sigma_1, \sin \pi u/\sigma_1)$, with $\vec{v}_0 = 0$. $|\frac{d\vec{F}}{du}|$ $\frac{dF}{du}|^2 = 1$ gives $\ell = 2c/\omega = 2E/\pi T_0$. Finally, $\vec{X}(t, \sigma) = \frac{\sigma_1}{\pi} \cos(\pi \sigma/\sigma_1)(\cos(\pi ct/\sigma_1), \sin(\pi ct/\sigma_1)).$