
5/3/13 Lecture outline

⋆ Reading: Zwiebach chapters 6 and 7.

• Recall, Sstring =
∫

dtdxL(∂y
∂t
, ∂y
∂x

), with momentum densities

Pt =
∂L
∂ẏ

, Px =
∂L
∂y′

.

Least action gives the equations of motion

∂Pt

∂t
+

∂Px

∂x
= 0.

As we discussed last time, the relativistic string action is proportional to the string’s

worldsheet area in spacetime:

LNG = −T0

c

√

(Ẋ ·X ′)2 − (Ẋ)2(X ′)2,

and we have

Pτ
µ =

∂L
∂Ẋµ

= −T0

c

(Ẋ ·X ′)X ′

µ − (X ′)2Ẋµ
√

(Ẋ ·X ′)2 − (Ẋ)2(X ′)2
,

and

Pσ
µ =

∂L
∂Xµ′

= −T0

c

(Ẋ ·X ′)Ẋµ − (Ẋ)2X ′
µ

√

(Ẋ ·X ′)2 − (Ẋ)2(X ′)2
.

The condition δS = 0 gives the Euler-Lagrange equations

∂Pτ
µ

∂τ
+

∂Pσ
µ

∂σ
= 0.

For the open string, δS = 0 also requires
∫

dτ [δXµP σ
µ ]

σ0

0 = 0, which requires for each µ

index either of the Dirichlet or Neumann BCs, at each end:

Dirichlet
∂Xµ

∂τ
(τ, σ∗) = 0 → δXµ(τ, σ∗) = 0,

Neumann Pσ
µ (τ, σ∗) = 0.

• Exploit (τ, σ) → (τ ′, σ′) reparameterization invariance to pick useful “gauges”, to

simplify the above equations. We will discuss choices such that we can impose constraints

Ẋ ·X ′ = 0 Ẋ2 +X ′2 = 0. (1)
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In this case, we have

Pτµ =
1

2πα′
Ẋµ Pσµ = − 1

2πα′
Xµ′

, (2)

and then the EOM is simply a wave equation:

(∂2
τ − ∂2

σ)X
µ = 0. (3)

Now let’s explain these things in more detail.

• Static gauge: pick τ = t. Verify sign inside
√· in this case: Xµ′

= (0, ~X ′), Ẋµ =

(c, ~̇X), take e.g. ~̇X = 0 to get
√· = c| ~X ′|.

• In static gauge, there is no KE, so L = −V , and verify that string stretched length

a, e.g. X1 = f(σ), has V = T0a: Ẋ
2 → −c2, (X ′)2 = (f ′)2, Ẋ ·X ′ = 0, gives V = T0a. So

µ0 = T0/c
2.

• In static gauge, express S in terms of ~v⊥ = ∂t ~X − (∂t ~X · ∂s ~X)∂s ~X (with

ds ≡ |d ~X|t=const = |∂σ ~X||dσ|), show (Ẋ · X ′)2 − Ẋ2(X ′)2 = ( ds
dσ

)2(c2 − v2
⊥
), to get

L = −T0

∫

ds
√

1− v2
⊥
/c2. Also get

Pσµ = −T0

c2
(∂s ~X · ∂t ~X)Ẋµ + (c2 − (∂t ~X)2)∂sX

µ

√

1− v2
⊥
/c2

,

Pτµ =
T0

c2
ds

dσ

Ẋµ − (∂s ~X · ∂t ~X)∂sX
µ

√

1− v2
⊥
/c2

.

• Free, Neuman BCs, P σ
µ for the µ = 0 component implies that endpoints move

transversely, ∂s ~X · ∂t ~X = 0, so ~v⊥ = ~v. The condition ~P σ = 0 at the endpoints implies

that the speed of light, v = c, for the free (Neuman) BCs.

• Choose σ parameterization such that

∂σ ~X · ∂τ ~X = 0 and dσ =
ds

√

1− v2
⊥
/c2

=
dE

T0
.

(Using H =
∫

T0ds/
√

1− v2
⊥
/c2 and ∂t(ds/

√

1− v2
⊥
/c2) = 0.) The last equation above is

equivalent to (∂σ ~X)2 + c−2(∂t ~X)2 = 1. With this worldsheet gauge choice,

Pτµ =
T0

c2
∂tX

µ =
T 0

c2
(c, ~v⊥), Pσ,µ = −T0∂σX

µ = (0,−T0∂σ ~X).

We can write this as

Pτµ =
1

2πα′
Ẋµ Pσµ = − c2

2πα′
Xµ′

, (4)
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and then the EOM is simply a wave equation:

(∂2
τ − c2∂2

σ)X
µ = 0. (5)

• Solution of the EOM for open string with free BCs: ~X(t, σ) = 1
2 (

~F (ct+σ)+ ~F (ct−σ))

where the open string has σ ∈ [0, σ1] and (1) implies that |d~F (u)
du

|2 = 1, and ~X ′|ends = 0

implies ~F (u + 2σ1) = ~F (u) + 2σ1~v0/c. Note ~F (u) is the position of the σ = 0 end at

time u/c. Then show that ~v0 is the average velocity of any point σ on the string over

time interval 2σ1/c. Example from book: ~X(t, σ = 0) = ℓ
2(cosωt, sinωt). Find ~F (u) =

σ1

π
(cosπu/σ1, sinπu/σ1), giving ~X(t, σ) = σ1

π
cos(πσ/σ1)(cos(πct/σ1), sin(πct/σ1)).
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