
4/25/12 Lecture outline

⋆ Reading: Zwiebach chapters 4, 5, 6.

• Last time:

S =

∫

Σ

ddW ξL(φ, ∂αφ),

the variation is

δS =

∫

Σ

ddW ξ

(

∂L

∂φ
− ∂α

∂L

∂∂αφ

)

δφ+

∫

∂Σ

∂L

∂∂αφ
δφ(ddW−1ξ)α,

where the last term is the boundary contribution, obtained by integrating a total derivative

using Gauss’ law. The Euler/Lagrange equations are thus

(

∂L

∂φa
− ∂α

∂L

∂∂αφa

)

= 0,

where we included an extra index a to be more general.

We also have to ensure that the boundary term vanishes, which is done by requiring

either ∂L
∂∂αφan

α|∂Σ = 0, where nα is perpendicular to the boundary, or by requiring that

φa is constant along the boundary, or by a combination of these.

While we’re at it, let’s recall/quote Noether’s theorem, relating continuous symmetries

of the action to conservation laws. If L is invariant under some continuous transformation

φa → φa + δφa, then there is a conserved quantity jα:

∂αj
α = 0 with jα ∼

∂L

∂∂αφa
δφa,

where the conservation law follows from δL = 0 and the Euler-Lagrange equations. We’ll

see that spacetime conservation laws, like spacetime momentum and angular momentum

conservation, will arise from such conserved currents on the string worldsheet.

There is also conservation of world-volume energy/ momentum, coming from world-

volume translation symmetry, ξ → ξ + δξ: ∂αT
αβ = 0, where

Tαβ =
∂L

∂(∂αφa)
∂βφ

a − gαβL

is the world-volume energy momentum tensor.

• Recall S = −mc
∫

ds + q
c

∫

Aµdx
µ for a relativistic point particle, where we can

write ds =
√

−gµν ẋµẋνdτ , with ˙≡ d
dτ
, and τ is the arbitrary worldline parameter, with

reparameterization symmetry τ → τ ′. For a string world-sheet, we need two parameters,

ξa, a = 1, 2. The string trajectory is x : Σ → M , where Σ is the 2d world-sheet, with local
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coordinates ξa, and M is the target space, with local coordinates xµ. The worldsheet area

element is A =
∫

d2ξ
√

|h|, where hab is the worldsheet metric, and |h| is its determinant.

Suppose that the target space has metric gµν , with space-time length e.g. ds2 = gµνdx
µdxν .

By writing dxµ = ∂ax
µdξa, we get

ds2 = gµν
dxµ

dξa
dxν

dξb
dξadξb, so hab = gµν

dxµ

dξa
dxν

dξb
,

where this hab is called the induced metric. So the worldsheet area functional is

A =

∫

d2ξ

√

det(gµν
dxµ

dξa
dxν

dξb
).

• For strings in Minkowski spacetime, we write it instead as Xµ(τ, σ). There is also a

needed minus sign, as the area element is
√

|g|, actually involves the absolute value of the

determinant, and the determinant is negative (just like det η = −1). So

A =

∫

dτdσ

√

(
∂X

∂τ
·
∂X

∂σ
)2 − (

∂X

∂τ
)2(

∂X

∂σ
)2,

where the spacetime indices are contracted with the metric gµν . To get an action with

[S] = ML2/T , we have

SNambu−Goto = −
T0

c

∫ τf

τi

dτ

∫

dσ

√

(Ẋ ·X ′)2 − (Ẋ)2(X ′)2,

where we define Ẋµ ≡ dxµ

dτ
and Xµ′ ≡ ∂Xµ

∂σ
annd T0 is the string tension, with [T0] =

[F ] = [ML/T 2].

The action is reparameterization invariant: can take (τ, σ) → (τ ′(τ, σ), σ′(τ, σ)) and

get S → S. Enormous symmetry/redundancy in choice of (τ, σ); can “fix the gauge” to

some convenient choice, and the physics is completely independent of the choice.

• We can write SNG in terms of the Lagrangian density

LNG = −
T0

c

√

(Ẋ ·X ′)2 − (Ẋ)2(X ′)2,

and we have

Pτ
µ =

∂L

∂Ẋµ
= −

T0

c

(Ẋ ·X ′)X ′
µ − (X ′)2Ẋµ

√

(Ẋ ·X ′)2 − (Ẋ)2(X ′)2
,

and

Pσ
µ =

∂L

∂Xµ′
= −

T0

c

(Ẋ ·X ′)Ẋµ − (Ẋ)2X ′
µ

√

(Ẋ ·X ′)2 − (Ẋ)2(X ′)2
.
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The condition δS = 0 gives the Euler-Lagrange equations

∂Pτ
µ

∂τ
+

∂Pσ
µ

∂σ
= 0.

For the open string, δS = 0 also requires
∫

dτ [δXµP σ
µ ]

σ0

0
= 0, which requires for each µ

index either of the Dirichlet or Neumann BCs, at each end:

Dirichlet
∂Xµ

∂τ
(τ, σ∗) = 0 → δXµ(τ, σ∗) = 0,

Neumann Pσ
µ (τ, σ∗) = 0.
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