## 4/23/12 Lecture outline

 $\star$  Reading: Zwiebach chapters 4, 5, 6.

• Nonrelativistic strings.  $[T_0] = [F] = [E]/L = [\mu_0][v^2]$ . Indeed, considering  $F = ma$ for an element dx of the string yields the string wave equation  $\frac{\partial^2 y}{\partial x^2} - \frac{1}{v_c^2}$  $v_0^2$  $\frac{\partial^2 y}{\partial t^2} = 0$ , with  $v_0 = \sqrt{T_0/\mu_0}$ . Endpoints at  $x = 0$  and  $x = a$ . Can choose Dirichlet or Neumann BCs at these points. With Dirichlet at each end,  $y_n(x) = A_n \sin(n\pi x/a)$  and the general solution is  $y(x,t) = \sum_{n} y_n(x) \cos \omega_n t$ , where  $\omega_n = v_0 n \pi/a$  (and the  $A_n$  are determined from the initial conditions, by Fourier transform).

The nonrelativistic string action is  $S = \int dt L$  where L is the kinetic energy minus potential energy, which gives

$$
S = \int dt \int dx \left( \frac{1}{2}\mu_0 \left(\frac{\partial y}{\partial t}\right)^2 - \frac{1}{2}T_0 \left(\frac{\partial y}{\partial x}\right)^2 \right),
$$

which is a particular case of the more general action  $S = \int dt dx \mathcal{L}(\frac{\partial y}{\partial t}, \frac{\partial y}{\partial x})$ . We can then define the momentum density and corresponding spatial quantity

$$
\mathcal{P}^t = \frac{\partial \mathcal{L}}{\partial \dot{y}}, \qquad \mathcal{P}^x = \frac{\partial \mathcal{L}}{\partial y'}.
$$

The variation of the action is

$$
\delta S = \int dt dx [\mathcal{P}^t \delta \dot{y} + \mathcal{P}^x \delta y'] = -\int dt dx [\frac{\partial \mathcal{P}^t}{\partial t} + \frac{\partial \mathcal{P}^x}{\partial x}] \delta y + \text{bndy terms}
$$

and the action is made stationary,  $\delta S = 0$ , if the boundary terms vanish and if

$$
\frac{\partial \mathcal{P}^t}{\partial t} + \frac{\partial \mathcal{P}^x}{\partial x} = 0,
$$

which when applied to the above particular choice of action gives the usual wave equation. The boundary terms must also be set to zero, and they involve  $\mathcal{P}^t \delta y$  at the time endpoints and  $\mathcal{P}^x \delta y$  at the space endpoints. Neumann BCs is to set  $\mathcal{P}^x = 0$  at the spatial endpoints (for all t), and Dirichlet BCs is to set  $\delta y = 0$  (and thus  $\mathcal{P}^t = 0$ ) at the spatial endpoints.

• Particle  $q(\tau)$  vs field  $\phi(\xi^{\alpha})$  for  $\alpha = 0, \ldots d_W - 1$ : particle is the case of a single  $\xi$ ,  $d_W = 1$ , vs more than one for a field (e.g.  $\vec{E}(t, \vec{x})$ ). Fields have

$$
S = \int_{\Sigma} d^{dw} \xi \mathcal{L}(\phi, \partial_{\alpha} \phi),
$$

the variation is

$$
\delta S = \int_{\Sigma} d^{d_{W}} \xi \left( \frac{\partial \mathcal{L}}{\partial \phi} - \partial_{\alpha} \frac{\partial \mathcal{L}}{\partial \partial_{\alpha} \phi} \right) \delta \phi + \int_{\partial \Sigma} \frac{\partial \mathcal{L}}{\partial \partial_{\alpha} \phi} \delta \phi (d^{d_{W}-1} \xi)^{\alpha},
$$

where the last term is the boundary contribution, obtained by integrating a total derivative using Gauss' law. The Euler/Lagrange equations are thus

$$
\left(\frac{\partial \mathcal{L}}{\partial \phi^a} - \partial_\alpha \frac{\partial \mathcal{L}}{\partial \partial_\alpha \phi^a}\right) = 0,
$$

where we included an extra index  $a$  to be more general.

We also have to ensure that the boundary term vanishes, which is done by requiring either  $\frac{\partial \mathcal{L}}{\partial \partial_{\alpha} \phi^a} n^{\alpha} |_{\partial \Sigma} = 0$ , where  $n^{\alpha}$  is perpendicular to the boundary, or by requiring that  $\phi^a$  is constant along the boundary, or by a combination of these.