4/9/12 Lecture outline

 \star Reading: Zwiebach chapters 2 and 3.

• Light cone coordinates: $x^{\pm} = \frac{1}{\sqrt{2}}$ \overline{z} ($x^0 \pm x^1$). The bad: spoils rotational symmetry. The good: will make it easier to quantize string theory (avoids having to discuss here more advanced alternatives, which do not require going to the light cone coordinates). $-ds^2 = -2dx^+dx^- + dx_2^2 + dx_3^2 = -\hat{\eta}_{\mu\nu}dx^{\mu}dx^{\nu}.$ $a_{\pm} = -a^{\mp}.$

• $p^{\mu} = (E/c, p_x, p_y, p_z)$, with $p_{\mu}p^{\mu} = -m^2c^2$. p^{μ} transforms as a Lorentz 4-vector, $p^{\mu'} = \Lambda^{\mu'}_{\nu} p^{\nu}$. Proper time: $ds^2 = c^2 dt_p^2 = c^2 dt^2 (1 - \beta^2)$. $u^{\mu} = c dx^{\mu}/ds = dx^{\mu}/dt_p =$ $\gamma(c, \vec{v})$, and $u_{\mu}u^{\mu} = -c^2$. A massive point particle has $p^{\mu} = mu^{\mu}$. Massless particles, like the photon, have p^{μ} with $p^{\mu}p_{\mu} = 0$. $p_{\mu}x^{\mu} \equiv p \cdot x$ is Lorentz invariant. Free particle wavefunction $\psi \sim \exp(ip \cdot x/\hbar)$. Take $p^{\pm} = \frac{1}{\sqrt{\hbar}}$ $\frac{1}{2}(p^0 \pm p^1) = -p_{\mp}$. So $i\hbar \partial_{x^+} \rightarrow -p_{+} = E_{lc}/c$, i.e. $p^- = E_{lc}/c$.

• Extra (spacelike) dimensions, e.g. 2 extra dimensions: $-ds^2 = -c^2 dt^2 + \sum_{i=1}^5 (dx^i)^2$. Consider one extra space dimension, taken to be a circle, $x \sim x + 2\pi R$. Now consider $(x, y) \sim (x + 2\pi R, y) \sim (x, y + 2\pi R)$; gives a torus. Orbifold, e.g. $z \sim e^{i\pi i/N}z$, gives a cone (singular at fixed point).

• Recall QM: $[x^i, p_j] = i\hbar \delta^{i_j}$. Particle in square well box of size a: $E = (n\pi/a)^2/2m$. Now particle in periodic box, $x_4 \sim x_4 + 2\pi R$. The other directions, x^{μ} , are given by some standard Hamiltonian, e.g. the hydrogen atom, which we'll call H_{4d} . So H_{5d} = $H_{4d} + \hat{p}_4^2/2m$, with $\hat{p}_4 = -i\hbar\partial_{x_4}$ in position space. The 4d energy eigenstates are then given by separation of variables to be $\psi_{E_{5d}}(\vec{x}, x_4) = \psi_{E_{4d}}(\vec{x}) \frac{1}{\sqrt{2\pi R}} e^{i\ell x_4/R}$, with ℓ an integer, and $\psi_{E_{4d}}$ is an energy eigenstate of the 4d problem. So $E_{5d} = E_{4d} + \ell^2/2mR^2$. For R small, the low energy states are simply those with $\ell = 0$, and the extra dimension is unseen.