5/14/12 Lecture outline

- \star Reading: Zwiebach chapter 9 and 10.
- Last time, solved the equations of motion, e.g. for open string with N BCs:

$$X^{\mu}(\tau,\sigma) = x_0^{\mu} + 2\alpha' p^{\mu}\tau + i\sqrt{2\alpha'} \sum_{n\neq 0}^{\infty} \frac{1}{n} \alpha_n^{\mu} e^{-in\tau} \cos n\sigma,$$

where $\alpha_{-n}^{\mu} \equiv \alpha_{n}^{\mu*}$ (to make X^{μ} real) and it's also convenient to define $\alpha_{0}^{\mu} \equiv \sqrt{2\alpha'}p^{\mu}$. Then

$$\dot{X}^{\mu} \pm X^{\mu'} = \sqrt{2\alpha'} \sum_{n=-\infty}^{\infty} \alpha_n^{\mu} e^{-in(\tau \pm \sigma)}.$$

In light cone gauge take $n_{\mu} = (1/\sqrt{2}, 1/\sqrt{2}, 0, ...)$. Then $n \cdot X = X^+$ and $n \cdot p = p^+$, so our constraint gives $X^+ = \beta \alpha' p^+ \tau$ and $p^+ = 2\pi \mathcal{P}^{\tau+}/\beta$ (again, $\beta = 2$ for open strings and $\beta = 1$ for closed strings. Also note, $X'^+ = 0$ and $\dot{X}^+ = \beta \alpha' p^+$); of course, p^+ is a constant of the motion. Since the constraints give $(\dot{X} \pm X')^2 = -2(\dot{X}^+ \pm X'^+)(\dot{X}^- \pm X'^-) + (\dot{X}^I \pm X'^I)^2 = 0$, we can write this as $\partial_{\tau} X^- \pm \partial_{\sigma} X^- = \frac{1}{\beta \alpha'} \frac{1}{2p^+} (\dot{X}^I \pm X^{I'})^2$, where I are the transverse directions. This leads to

$$\sqrt{2\alpha'}\alpha_n^- = \frac{1}{p^+}L_n^\perp, \qquad L_n^\perp = \frac{1}{2}\sum_{m=-\infty}^\infty \alpha_{n-m}^I\alpha_m^I.$$

This means that there is no dynamics in X^- , other than the zero mode. For n = 0, using $\alpha_0^- = \sqrt{2\alpha'}p^-$ get $2\alpha'p^+p^- = L_0^{\perp}$. Light cone gauge allows us to make \dot{X}^+ a constant, and to solve for the derivatives of X^- (without having to take a square root). Finally, note that the string has

$$M^{2} = -p^{2} = 2p^{+}p^{-} - P^{I}P^{I} = \frac{1}{\alpha'}\sum_{n=1}^{\infty} \alpha_{n}^{I*}\alpha_{n}^{I}$$

See that all classical states have $M^2 \ge 0$.

• Consider classical scalar field theory, with $S = \int d^D x (-\frac{1}{2}\eta^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi - \frac{1}{2}m^2\phi^2)$. The EOM is the Klein-Gordon equation

$$(\partial^2 - m^2)\phi = 0, \qquad \partial^2 \equiv -\frac{\partial^2}{\partial t^2} + \nabla^2$$

The Hamiltonian is $H = \int d^{D-1}x(\frac{1}{2}\Pi^2 + \frac{1}{2}(\nabla\phi)^2 + \frac{1}{2}m^2\phi^2)$, where $\Pi = \partial \mathcal{L}/\partial(\partial_0\phi) = \partial_0\phi$. Take e.g. D = 1 and get SHO with $q \to \phi$ and $m \to 1$ and $\omega \to m$.

Classical plane wave solutions: $\phi(t, \vec{x}) = ae^{-iEt+i\vec{p}\cdot\vec{x}} + c.c.$, where $E = E_p = \sqrt{\vec{p}^2 + m^2}$, and the +c.c. is to make ϕ real. Letting $\phi(x) = \int \frac{d^D p}{(2\pi)^D} e^{ip\cdot x} \phi(p)$, the reality condition is $\phi(p)^* = \phi(-p)$ and the EOM is $(p^2 + m^2)\phi(p) = 0$.