5/7/12 Lecture outline

- * Reading: Zwiebach chapter 8, 9.
- Next topic: symmetries and conservation laws. Recall charge conservation $\partial_{\mu}j^{\mu}=0$, which is related to gauge invariance, $\delta\mathcal{L}=0$ under $\delta A_{\mu}=\partial_{\mu}f$. Recall Noether's theorem for $L(q,\dot{q})$, if continuous symmetry δq_i then $p_i\delta q_i$ is conserved. For $S=\int d\xi^0\dots d\xi^k\mathcal{L}(\phi^a,\partial_{\alpha}\phi^a)$, a symmetry $\delta\phi^a$ implies a conserved current $j^{\alpha}=\frac{\partial\mathcal{L}}{\partial(\partial_{\alpha}\phi^a}\delta\phi^a)$.

For \mathcal{L}_{NG} , get conservation of $j^a_{\mu} = \mathcal{P}^a_{\mu}$ (where $a = \sigma, \tau$) is the conserved Noether current for spacetime translation invariance, $\delta X^{\mu} = \epsilon^{\mu}$. The string equations of motion are equivalent to the worldsheet conservation of this current: $\partial_a j^a_{\mu} = 0$. The spacetime momentum of the string is the corresponding conserved charge: $p^{\mu} = \int d\sigma \mathcal{P}^{\tau}_{\sigma}$. (More generally, it is $\int (\mathcal{P}^{\tau}_{\mu} d\sigma - \mathcal{P}^{\sigma}_{\mu} d\tau)$.) This is conserved for the closed string or open Neumann BCs. Not conserved for Dirichlet BCs.

The Lorentz symmetry comes from the worldsheet symmetry $\delta X^{\mu} = \epsilon^{\mu\nu} X_{\nu}$, which is a symmetry if $\epsilon^{\mu\nu} = \epsilon^{[\mu\nu]}$. The associated conserved currents are $\mathcal{M}^{\alpha}_{\mu\nu} = X_{\mu}\mathcal{P}^{\alpha}_{\nu} - (\mu \leftrightarrow \nu)$. The corresponding charges $M_{\mu\nu} = \int (\mathcal{M}^{\tau}_{\mu\nu} d\sigma - \mathcal{M}^{\sigma}_{\mu\nu} d\tau)$ are the angular momenta (and M^{0i} is related to the center of mass position at t = 0).

- $T_0 \equiv 1/2\pi\alpha'\hbar c$. Consider string in 12 plane. Find that the rotational angular momentum has $M_{12} = \int_0^{\sigma_1} d\sigma (X_1 \mathcal{P}_2^{\tau} X_2 \mathcal{P}_1^{\tau})$, which using above $\vec{X}(t,\sigma)$ and $\vec{\mathcal{P}}^{\tau} = \frac{T_0}{c^2} \partial_t \vec{X}$, leads to $M_{12} = \sigma_1^2 T_0/2\pi c$. Since $\sigma_1 = E/T_0$ and $M_{12} = J$, this gives $J = \alpha' \hbar E^2$, which is the Regge trajectory observation of the early '70s. $\ell_s = \hbar c \sqrt{\alpha'}$.
- Aside, for later: the string worldsheet analog of $S_{particle} \supset \int q A_{\mu} dx^{\mu}$ is $S_{string} \supset -\int_{\Sigma} B_{\mu\nu} \partial_{\tau} X^{\mu} \partial_{\sigma} X^{\nu} d\sigma d\tau$.