5/2/12 Lecture outline

- \star Reading: Zwiebach chapter 7, 8, 9.
- Last time: pick gauge

 $\tau = t$, define $ds \equiv |d\vec{X}|_{t=const}$, and choose σ such that

$$\partial_{\sigma} \vec{X} \cdot \partial_{\tau} \vec{X} = 0$$
 and $d\sigma = \frac{ds}{\sqrt{1 - v_{\perp}^2/c^2}} = \frac{dE}{T_0}$

(Using $H = \int T_0 ds / \sqrt{1 - v_{\perp}^2/c^2}$ and $\partial_t (ds / \sqrt{1 - v_{\perp}^2/c^2}) = 0$.) The last equation above is equivalent to $(\partial_\sigma \vec{X})^2 + c^{-2} (\partial_t \vec{X})^2 = 1$. Summarizing, we have

$$\dot{X} \cdot X' = 0$$
 $\dot{X}^2 + X'^2 = 0.$ (1)

With this worldsheet gauge choice,

$$\mathcal{P}^{\tau\mu} = \frac{T_0}{c^2} \partial_t X^\mu = \frac{T^0}{c^2} (c, \vec{v}_\perp), \qquad \mathcal{P}^{\sigma,\mu} = -T_0 \partial_\sigma X^\mu = (0, -T_0 \partial_\sigma \vec{X}).$$

We can write this as

$$\mathcal{P}^{\tau\mu} = \frac{1}{2\pi\alpha'} \dot{X}^{\mu} \qquad \mathcal{P}^{\sigma\mu} = -\frac{c^2}{2\pi\alpha'} X^{\mu'}, \tag{2}$$

and then the EOM is simply a wave equation:

$$(\partial_{\tau}^2 - c^2 \partial_{\sigma}^2) X^{\mu} = 0.$$
(3)

• Solution of the EOM for open string with free BCs: $\vec{X}(t,\sigma) = \frac{1}{2}(\vec{F}(ct+\sigma)+\vec{F}(ct-\sigma))$ where the open string has $\sigma \in [0,\sigma_1]$ and (1) implies that $|\frac{d\vec{F}(u)}{du}|^2 = 1$, and $\vec{X}'|_{ends} = 0$ implies $\vec{F}(u+2\sigma_1) = \vec{F}(u) + 2\sigma_1 \vec{v_0}/c$. Note $\vec{F}(u)$ is the position of the $\sigma = 0$ end at time u/c. Then show that $\vec{v_0}$ is the average velocity of any point σ on the string over time interval $2\sigma_1/c$. Example from book: $\vec{X}(t,\sigma=0) = \frac{\ell}{2}(\cos \omega t, \sin \omega t)$. Find $\vec{F}(u) = \frac{\sigma_1}{\pi}(\cos \pi u/\sigma_1, \sin \pi u/\sigma_1)$, giving $\vec{X}(t,\sigma) = \frac{\sigma_1}{\pi}\cos(\pi\sigma/\sigma_1)(\cos(\pi ct/\sigma_1), \sin(\pi ct/\sigma_1))$.