
4/25/11 Lecture 9 outline

• Last time, geodesic equation: a particle in a general spacetime metric moves to

extremize

∆τ =

∫
dτ =

∫
dλ

√
−gµν(x)

dxµ

dλ

dxν

dλ
/c2. (1)

This is the definition of a geodesic. Gives

d2xν

dλ2
+ Γνµσ

dxµ

dλ

dxσ

dλ
= 0,

Γνµσ = 1
2g
ρν(∂µgρσ + ∂σgρµ − ∂ρgµσ)

So the geodesic equation is

d2xν

dλ2
+ Γνµσ

dxµ

dλ

dxσ

dλ
= 0.

When we try to solve the geodesic equations, it’s useful to use integrals of the motion.

While it’s perhaps not yet obvious (we’ll explain it more soon), one integral of the motion

is

gµν
dxµ

dλ

dxν

dλ
= constant.

For massive particles we can take λ = τ and the constant is −1, uµu
µ = −1. For photons,

the constant is 0, showing that photons move on the light cone.

When the metric has a spatial symmetry isometry, then there is another integral of

the motion, ξ · u = 0 where ξ is any Killing vector isometry of the space.

• Example, FRW metric ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2). Consider extremizing∫
dτ(−( dtdτ )2 + a2(t)dx

i

dτ
dxi

dτ ), (it gives the same EOM as the
√

). Vary δt and δ~x to get the

four EOM equations:
d2x0

dτ2
+ aȧ

dxi

dτ

dxi
dτ

= 0.

d2xi

dτ2
+

2ȧ

a

dxi

dτ

dx0

dτ
= 0.

So we see that Γ0
ij = aȧδij and Γi0j = ȧ

aδij are the non-zero terms (which also follows from

plugging the metric into the formula above).

Consider e.g. the null paths of photons moving along the x axis, (t(λ), x(λ), 0, 0) with
dx
dλ = 1

a
dt
dλ . Combine this with the geodesic equation for x0 = t to get

d2t

dλ

2

+
ȧ

a
(
dt

dλ
)2 = 0.
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The solution is dt
dλ = ω0/a. This is good. The 4-velocity of some observer is uµ with

uµu
µ = −1 and in their rest frame u0 = 1/

√
−g00 and the energy of a photon is E =

−pµuµ = −g00u0 dx
0

dλ . So the energy measured by this comoving observer at fixed spatial

coordinates is −√g00 dx
0

dλ = ω0/a ∼ 1/a. This is the cosmological redshift.

•Weak field approximation: take gµν = ηµν+hµν , with |hµν | � 1, and we’ll work only

to lowest order in h, dropping terms quadratic and higher in hµν , e.g. gµν = ηµν−hµν . We

can think of hµν as a symmetric tensor field propagating in Minkowski space. Let’s consider

the geodesic equation for a massive particle that’s moving slowly, so dxi/dτ � dt/dτ . We’ll

also suppose that the field is static, so ∂0hµν ≈ 0. In these approximations, the geodesic

equation’s only contribution from the connection is from Γµ00 ≈ − 1
2∂

µh00 and the geodesic

equation becomes

d2xµ

dτ2
≈ − 1

2∂
µh00

(
dt

dτ

)2

,

which gives, dividing by dt/dτs,
d2xi

dt2
≈ 1

2∂
ih00.

Using h00 = −2Φ, this indeed reduces to the non-relativistic expression ~a = − ~∇Φ.

• Next topic, the Schwarzschild metric, which is the basic, spherically symmetric solu-

tion of the Einstein equations of GR (which we’ll meet later): ds2 = −(1−2GM/rc2)dt2 +

(1 − 2GM/rc2)−1dr2 + r2dΩ2. This is the metric e.g. outside of the sun or any spheri-

cally symmetric, uncharged, un-rotating mass distribution. It’s immediately apparent that

something bizarre happens for r ≤ R∗ = 2GM/c2. For ordinary objects like the sun, earth,

etc R∗ � Robject, and the above metric doesn’t apply inside the object. (It’s modified,

analogous to how we use Gauss’ law to find the electric field inside a charge distribution.)

E.g. R∗ for the sun is about 2.95km, way inside the sun. If Robject ≤ R∗, the object is a

black hole.

In GR we can use G = c = 1 units, measuring mass in meters. In these units

Msun ≈ 1.47km and Mearth ≈ 0.44cm.
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