
4/20/11 Lecture 8 outline

• From now on, if I say that some quantity “transforms properly,” it means transforms

covariantly under general coordinate transformations xµ
′
(x), i.e. all indices transform

with the appropriate factor of “∂x∂x”. GR is based on the symmetry principle of general

coordinate invariance, and it posits that all physical quantities transform properly.

Examples of properly transforming vectors (components) uµ = dxµ

dλ , Jµ, Aµ, pµ, kµ

etc. Again, we can always raise / lower indices using the metric gµν or its inverse gµν .

We saw that, if Aµ is a properly transforming vector, then ∂νAµ is not, because of a

bad term. The bad term cancels in ∂νAµ − ∂µAν . We’ll see shortly how to correct for the

bad term. Basically, we’ll see that we need to replace ∂µ with an improved quantity called

∇µ = ∂µ + . . ., where the . . . is something that’ll depend on what it’s acting on.

• Equivalence principle→ a particle in a general spacetime metric moves to extremize

∆τ =

∫
dτ =

∫
dλ

√
−gµν(x)

dxµ

dλ

dxν

dλ
/c2. (1)

This is the definition of a geodesic. It applies whether the particle is massive or massless.

Note that for massive particles we can replace λ→ τ , while for massless ones we keep it as

an arbitrary parameter. In any case, note reparameterization symmetry λ → λ′(λ). The

geodesic equation can be derived from the E.L. equations:

δ∆τ = − 1
2

∫
(−gµν

dxµ

dλ

dxν

dλ
)−1/2δ(gµν

dxµ

dλ

dxν

dλ
),

so we need δ(gµν
dxµ

dλ
dxν

dλ ) = 0. (Note that we’d get these same EOM if we extremized

instead
∫
dλ gµν

dxµ

dλ
dxν

dλ .) This gives

0 = δxρ
[
∂ρgµν

dxµ

dλ

dxν

dλ
− 2

d

dλ
(gρν

dxν

dλ
)

]
.

Using
dgρν
dλ = ∂σgρν

dxσ

dλ and noting that we need to symmetrize dxσ

dλ
dxν

dλ in σ and ν,

δds2/dλ2 = −2gρνδx
ρ

[
d2xν

dλ2
+ Γνµσ

dxµ

dλ

dxσ

dλ

]
,

where we here meet the Christoffel symbol (which we’ll later use to fix ∂µAν not being a

vector)

Γνµσ = 1
2g
ρν(∂µgρσ + ∂σgρµ − ∂ρgµσ)
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So the geodesic equation is

d2xν

dλ2
+ Γνµσ

dxµ

dλ

dxσ

dλ
= 0.

Writing uµ ≡ dxµ

dλ , the geodesic equation is d
dλu

ν = −Γνµσu
µuσ.

In free-falling coordinates, we can make locally at any point p g
µ̂ν̂
|p = η

µ̂ν̂
and

∂
σ̂
g
µ̂ν̂
|p = 0, so we can make Γν̂

µ̂σ̂
|p = 0, and the geodesic equation looks like free-fall in

special relativity. As we saw in our example of the metric at the North pole of the sphere,

quadratic terms in the metric away from p don’t vanish, so generally e.g. ∂
κ̂
Γν̂
µ̂σ̂
|p 6= 0.

We’ll see a little later that these terms are indeed sensitive to local curvature.

• A preview of something we’ll discuss more later: we mentioned that d
dλ = dxµ

dλ
∂
∂xµ

gives a geometric vector when acting on invariant functions. However, it has to be modified

when acting on vectors, corresponding to the fact that geometric vectors need to be parallel

transported around the geometry to behave properly. We’ll introduce D
dλ = dxµ

dλ ∇µ, where

∇µ = ∂µ + . . ., where the . . . depends what it’s acting on, they aren’t there for scalars

but are needed for vectors, dual vectors, or general tensors. In this notation, the geodesic

equation is
D

dλ

dxµ

dλ
= 0.

• If the particle is not free falling, i.e. if it is under the influence of another force, we

just add the appropriate force term, to the RHS of the geodesic equation, e.g. a charged

particle in external electric and magnetic fields have

d2xµ

dτ2
+ Γνµσ

dxµ

dτ

dxσ

dτ
=

q

m
gνκ

dxν

dτ
Fκµ.

• Examples of geodesic equation (Hartle ch 8).

Plane in polar coodinates, dS2 = dr2 + r2dφ2. Geodesics extremize ∆S =
∫
dS =∫

dσL, with L = dS
dσ =

√
ṙ2 + r2φ̇2, where here we use =̇ d

dσ . The EL equations are the

same if we forget about the
√

. We can also multiply the EL equations by dσ
dS , which

essentially just replaces σ → S as the curve’s parameter. The EL equations then give

r = r(S) and φ = φ(S) with

d2r

dS2
= r(

dφ

dS
)2,

d

dS

(
r2
dφ

dS

)
= 0,

which are geodesic equations with Γrφφ = −r and Γφrφ = 1/r. This illustrates how the

Christoffel connection can be obtained either from its definition directly in terms of the

2



metric or, sometimes more conveniently, directly from the geodesic equation. Working

directly in terms of the metric, with grr = 1 and gφφ = r2, easily verify e.g. grrΓ
r
φφ = −r.

• When we try to solve the geodesic equations, it’s useful to use integrals of the

motion. While it’s perhaps not yet obvious (we’ll explain it more soon), one integral of

the motion is

gµν
dxµ

dλ

dxν

dλ
= constant.

For massive particles we can take λ = τ and the constant is −1, uµu
µ = −1. For photons,

the constant is 0, showing that photons move on the light cone.

When the metric has a spatial symmetry isometry, then there is another integral of

the motion, ξ · u = 0 where ξ is any Killing vector isometry of the space.

In our example above, u ·u = −1 is replaced with ~u ·~u = 1, i.e. r′2 + r2φ′2 = 1, where
′ = d

dS . There is an isometry of rotating φ, so ξr = 0, ξφ = 1, and the conserved quantity is

` ≡ ~ξ · ~u = gABξ
AuB = r2φ′. So the first equation becomes r′ =

√
1− `2/r2 and then the

second gives φ′/r′ = dφ
dr = `r−2(1 − `2/r2)−1/2, which integrates to φ = φ∗ + cos−1(`/r).

At the end, this yields the straight lines expected from rectangular coordinates, the hard

way.

• Example, FRW metric ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2). Consider extremizing∫
dτ(−( dtdτ )2 + a2(t)dx

i

dτ
dxi

dτ ), (it gives the same EOM as the
√

). Vary δt and δ~x to get the

four EOM equations:
d2x0

dτ2
+ aȧ

dxi

dτ

dxi
dτ

= 0.

d2xi

dτ2
+

2ȧ

a

dxi

dτ

dx0

dτ
= 0.

So we see that Γ0
ij = aȧδij and Γi0j = ȧ

aδij are the non-zero terms (which also follows from

plugging the metric into the formula above).

Consider e.g. the null paths of photons moving along the x axis, (t(λ), x(λ), 0, 0) with
dx
dλ = 1

a
dt
dλ . Combine this with the geodesic equation for x0 = t to get

d2t

dλ

2

+
ȧ

a
(
dt

dλ
)2 = 0.

The solution is dt
dλ = ω0/a. This is good. The 4-velocity of some observer is uµ with

uµu
µ = −1 and in their rest frame u0 = 1/

√
−g00 and the energy of a photon is E =

−pµuµ = −g00u0 dx
0

dλ . So the energy measured by this comoving observer at fixed spatial

coordinates is −√g00 dx
0

dλ = ω0/a ∼ 1/a. This is the cosmological redshift.

• Next topic, study ds2 = −(1− 2GM/rc2)dt2 + (1− 2GM/rc2)−1dr2 + r2dΩ2.
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