
4/18/11 Lecture 7 outline

•Last time, geometric vectors V = V µe(µ), where V is a geometric object, invariant

under coordinate transformations, but components V µ and basis vectors e(µ) do change.

Also introduced dual vectors (1-forms), ω = ωµθ
(µ), which transform like e.g. ωµ′ = Λνµ′ων

and θ(µ
′) = Λµ

′
νθ

(ν).

Geometric vectors have a basepoint p, which can be any point in the geometry, and

the vector lies in the tangent space Tp. E.g. along xµ(λ) a function has df/dλ = dxµ

dλ
∂f
∂xµ ,

so write
d

dλ
|p =

dxµ

dλ

∂

∂xµ

and think of this as an example of V = V µe(µ), with V = d
dλ , V µ = dxµ

dλ , and e(µ) = ∂
∂xµ .

For dual vectors we write e.g. df = ∂f
∂xµ dx

µ, and think of this as ω = ωµθ
(µ) with

θ(µ) = dxµ the basis for 1-forms (cotangent space).

Again, all forces have associated local (gauge) symmetries, e.g. SU(3) × SU(2) ×
U(1). Those are internal symmetries. GR is based on the symmetry principle of general

coordinate invariance (or covariance): one can do local coordinate changes xµ → xµ
′
(x).

Lorentz transformations are merely a special case, where it’s a linear transformation with

special matrices(rotations + boosts). It’ll be crucial to understand how vectors transform

under these changes.

Geometric vectors or dual vectors are unchanged. Their components and basis vectors

do change, oppositely, generalizing what we’ve seen for Lorentz transformations. The

general change can be nicely understood in coordinate basis, simply using the chain rule:

∂xµ

∂λ
=
∂xµ

′

∂xν
∂xν

∂λ
,

∂

∂xµ′ =
∂xν

∂xµ′

∂

∂xν
→ V µ

′
=
∂xµ

′

∂xν
V ν , e(µ′) =

∂xν

∂xµ′ e(ν),

and note that V µe(µ) = V µ
′
e(µ′) is invariant, good.

Likewise, considering df = ∂f
∂xµ dx

µ as an example of a dual vector, ω = ωµθ
(µ) shows

that their components and basis vectors transform as ωµ′ = ∂xν

∂xµ′
ων and θ(µ

′) = ∂xµ
′

∂xν θ
(ν).

• Illustrate this for changes between rectangular and polar or spherical coordinates.

Now consider ds2 = gµνdx
µdxν . The LHS is geometric, so it’s unchanged by co-

ordinate transformations, but the components gµν transform, oppositely from dxµdxν ,

gµ′ν′ = ∂xµ

∂xµ′
∂xν

∂xν′
gµν .

Example: dS2 = d~x · d~x = dr2 + r2dθ2 + r2 sin2 θdφ2, so we know gφφ = r2 sin2 θ, and

we can also get that from gφφ = ∂xµ

∂φ
∂xν

∂φ gµν =
∑3
i=1

(
∂xi

∂φ

)2
.
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Likewise for other tensors from special relativity, like Fµν or Tµν , e.g. Tµ
′ν′

=
∂xµ

′

∂xµ
∂xν

′

∂xν T
µν . You can always get it right by paying attention to the indices and whether

they’re raised or lowered.

The special case of Lorentz transformations is just distinguished by being linear and

mapping the flat metric ηµν to itself.

• Not everything is a tensor. Consider a vector Aµ (it could be e.g. Aµ = (φ, ~A) of

E&M). Then ∂µAν is not a tensor. On the other hand, ∂[µAν] is a tensor. More later.

• The proper time measured by an observer is general coordinate invariant. It is given

by dτ2 = −ds2/c2 = −gµνdxµdxν/c2. This fits with what we said before, where the effect

of a gravitational potential was included via g00 ≈ 1 + 2Φ(x)/c2 to describe clocks running

at different rates in a graviational potential.

• Equivalence principle → a particle in a general spacetime metric has

S/mc2 = −∆τ = −
∫
dτ = −

∫
dλ

√
−gµν(x)

dxµ

dλ

dxν

dλ
/c2. (1)

For any metric, the principle of least action means that the particle moves on the path of

maximal proper time! This is the definition of a geodesic. The geodesic equation can be

derived from the E.L. equations for proper time.

What about photons. Even though they have m = 0, we can still find how they move

by the relativistic version of Fermat’s principle: they too move so as to extremize their

proper time ∆τ . So photons also follow geodesics! Their equations of motion also follow

from the EL equations for the RHS of (1).
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