
4/13/11 Lecture 6 outline

• More nice examples from Hartle Ch 7.

Wormhole spacetime (illustrating embedding). Consider ds2 = −dt2 + dr2 + (b2 +

r2)(dθ2 + sin2 θdφ2) on slice t =const. and θ = π/2: dΣ2 = dr2 + (b2 + r2dφ2). Get it

from flat cylindrical coordinates dS2 = dρ2 + ρ2dψ2 + dz2 via z = z(r) and ρ = ρ(r), and

ψ = φ, which gives dΣ2 = (z′(r)2 + ρ′(r)2)dr2 + ρ2dφ2, which gives the metric above for

ρ2 = r2 + b2 and ρ(z) = b cosh(z/b). Plot in (z, ρ) plane and see need negative r to get

negative z. Embedding (r, φ) as a 2d surface in flat 3d space gives the wormhole picture

with two asymptotically flat regions connected by throat of length 2πb.

• Friedman Robertson Walker metric (more later!): ds2 = −dt2+a2(t)(dx2+dy2+dz2)

solves the Einstein equations (which we’ll see later) for a perfect fluid, taking p = wρ, with

scale factor a(t) = tq for q = 2/3(1 +w). Cosmology, with t = 0 the big bang. Light cones

have dx
dt = ±t−q.
• Geometric quantities from metrics. Taking ds2 = g00(dx0)2+g11(dx1)2+g22(dx2)2+

g33(dx3)2, find area elements e.g. dA =
√
g11g22dx

1dx2, 3-volume elements dV =
√
g11g22g33dx

1dx2dx3, and 4-volume element dv =
√
−g00g11g22g33d4x. Examples, e.g.

spherical coordinates.

• Hypersurfaces, e.g. x0 = h(x1, x2, x3) is a spacelike slice. Tangents are t and

normal is n, with n · t = 0, and the surface is spacelike as long as n · n < 0. E.g. Lorentz

Hyperboloid, −t2 + r2 = a2. Write t = a coshχ and r = a sinhχ, so the tangent is

tµ = (a sinhχ, a coshχ, 0, 0) and normal is nµ = (coshχ, sinhχ, 0, 0), with n · n = −1.

• Back to vectors, V = V µe(µ), where V is a geometric object, invariant under coor-

dinate transformations, but components V µ and basis vectors e(µ) do change, e.g. under

xµ
′

= Λµ
′

ν x
ν , then V µ

′
= Λµ

′
νV

ν , and e(µ′) = Λνµ′e(ν). Also introduce dual vectors

(1-forms), ω = ωµθ
(µ), which transform like e.g. ωµ′ = Λνµ′ων and θ(µ

′) = Λµ
′
νθ

(ν).

Geometric vectors have a basepoint p, which can be any point in the geometry, and

the vector lies in the tangent space Tp. E.g. along xµ(λ) a function has df/dλ = dxµ

dλ
∂f
∂xµ ,

so write
d

dλ
|p =

dxµ

dλ

∂

∂xµ

and think of this as an example of V = V µe(µ), with V = d
dλ , V µ = dxµ

dλ , and e(µ) = ∂
∂xµ .

For dual vectors we write e.g. df = ∂f
∂xµ dx

µ, and think of this as ω = ωµθ
(µ) with

θ(µ) = dxµ the basis for 1-forms (cotangent space).
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• Again, all forces have associated local (gauge) symmetries, e.g. SU(3) × SU(2) ×
U(1). Those are internal symmetries. GR is based on the symmetry principle of general

coordinate invariance (or covariance): one can do local coordinate changes xµ → xµ
′
(x).

Lorentz transformations are merely a special case, where it’s a linear transformation with

special matrices(rotations + boosts). It’ll be crucial to understand how vectors transform

under these changes.

Geometric vectors or dual vectors are unchanged. Their components and basis vectors

do change, oppositely, generalizing what we’ve seen for Lorentz transformations. The

general change can be nicely understood in coordinate basis, simply using the chain rule:

∂xµ

∂λ
=
∂xµ

′

∂xν
∂xν

∂λ
,

∂

∂xµ′ =
∂xν

∂xµ′

∂

∂xν
→ V µ

′
=
∂xµ

′

∂xν
V ν , e(µ′) =

∂xν

∂xµ′ e(ν),

and note that V µe(µ) = V µ
′
e(µ′) is invariant, good.

Likewise, considering df = ∂f
∂xµ dx

µ as an example of a dual vector, ω = ωµθ
(µ) shows

that their components and basis vectors transform as ωµ′ = ∂xν

∂xµ′ ων and θ(µ
′) = ∂xµ′

∂xν θ
(ν).
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