
3/30/11 Lecture 2 outline

• Last time, introduced 4-vectors aµ, and their inner product a · b ≡ aµbνηµν ≡ aµbµ.

Two inertial frames of reference are related by (taking origins to coincide) xµ
′

= Λµ
′
νx

ν .

The dot product is preserved as long as

ηρσ = Λµ
′

ρ Λν
′

σ ηµ′ν′ .

All Λ satisfying this form the Lorentz group. Note that all such Λ have determinant ±1,

and all those connected to the identity have determinant 1, so they have d4x = d4x′.

Examples: rotate in x, y plane

(
x′

y′

)
=

(
cos θ sin θ
− sin θ cos θ

)(
x
y

)
; boost along x axis,(

ct′

x′

)
=

(
coshφ − sinhφ
− sinhφ coshφ

)(
ct
x

)
. Consider the origin x′ = 0 in the original frame,

x/t = v = tanhφ, so sinhφ = γv and coshφ = γ ≡ 1/
√

1− v2/c2. Set c = 1 from now on.

Heartbeat in ′ frame: dt′, with dx′ = 0, get dt = γdt′, so seems to beat slower (likewise

from ds2 = −dt2 + d~x2 = −dt′2.

Ruler in ′ frame, length dx. Measure both ends simultaneously in lab, with dt = 0,

Then dx = dx′/γ, length contracted.

Two events are timelike separated if there is a frame where they happen a the same

place. In that frame, ∆s2 = ∆t′2 ≡ ∆τ2, where ∆τ is the “proper time” between the

events. In any other frame, ∆t = γ∆τ , time dilation.

For spacelike path, ∆s =
∫
ds =

∫ √
ηµν

dxµ

dλ
dxν

dλ dλ.

For timelike paths, the total proper time is ∆τ =
∫ √
−ηµν dx

µ

dλ
dxν

dλ dλ. This applies

even if there is acceleration. If no acceleration, can write ∆τ =
∫ √

1− v2dt.

Consider proper time between timelike separated events A and C. For observer 1, in

the frame where they’re at the same place, the proper time is δt = tC− tA. For observer 2,

who moves and comes back, the proper time length is ∆τAB′C =
√

1− v2∆τABC < ∆τABC .

Moving twin is younger when they meet again. Non-straight path has shorter proper time.

In spacetime, straight path between two events has the longest proper time.

• Upper vs lower indices, canonical examples: dxµ = (dt, d~x) and ∂µ = ( ∂∂t , ∇), e.g.

∂µx
ν = δνµ. Under xµ

′
= Λµ

′

ν x
ν , have dxµ

′
= Λµ

′

ν dx
ν and ∂

∂xµ′
= Λνµ′

∂
∂xν , where Λνµ′ is the

inverse to Λµ
′

ν .

• 4-velocity, uµ = dxµ/dτ , so uµuµ = −1. uµ = (γ, γ~v).

• 4-acceleration aµ = d2xµ/dτ2, satisfies aµuµ = 0.

• 4-momentum pµ = (E, ~p). For massive particle, pµ = muµ, so pµpµ = −m2. For a

massless object (e.g. photon), we still have pµ = (E, ~p) as a 4-vector. Here’s a way to see
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that (E, ~p) always transforms as a 4-vector. For any theory, the action S must be Lorentz

invariant; this ensures that the EOM behave properly under reference frame changes. Now

use the fact that energy and momentum can be related to the derivative of the action

w.r.t. changes of the endpoint time and position: L(xb) − ẋb(∂L/∂ẋb) = ∂Scl/∂tb, and

∂L/∂ẋb = ∂Scl/∂xb, so we have pµ = ∂Scl/∂x
µ, and the RHS is clearly a 4-vector.

• kµ = (ω,~k), so eik·x is invariant. On this, kµ = i∂µ. Fits with QM, where pµ = h̄kµ.

• Free particle action S =
∫
Ldt, L = −mc2

√
1− v2/c2. Then ~p = ∂L/∂v and

H = ~p · ~v − L combine into pµ = muµ. The EOM is then duµ/dτ = 0 for a free particle.

• Force fµ = dpµ

dτ = (γ dEdt , γ
d~p
dt ).

• Charge / current density Jµ = (ρ, ~J) =
∑
i qi(1, ~̇xi)δ

3(~x− ~xi(t)) = ρdx
µ

dx0 . Compare

ρd3x = ρ′d3x′ vs d4x = d4x′.

• Conservation law: Qencl =
∫
ρdV has Q̇ = −

∮
S
~J · d~a, taking ∂µJ

µ = 0. This

conservation law is related to a local symmetry, gauge invariance (more to follow), and

E&M is a consequence of this symmetry.

• All forces are related to local symmetries. GR shows that gravity is related to local

general coordinate transforms. A special case of that is translations, whose conserved

Noether charge you know is energy and momentum.

• Conservation of pµ is related to symmetry under translations in xµ. Write energy,

momentum as conserved charge, with corresponding density: the energy momentum tensor.

Energy momentum tensor, Pµencl =
∫
T 0µdV has Ṗµencl = −

∮
S
T iµdai, where T 00

is energy density, T 0i is momentum density / energy flux, and T ij is pressure etc. So

∂νT
µν = 0 (in flat spacetime.

• The energy-momentum tensor (or stress-energy tensor) is a tensor: under coordinate

transformations xµ
′

= Λµ
′

ρ x
ρ, get Tµ

′ν′
= Λµ

′

ρ Λν
′

σ T
ρσ.

• Examples of energy momentum tensors. For a bunch of particles, Tµν =∑
n p

µ
n
dxνn
dt δ

3(~x− ~xn(t)). Note that dxνn/dt = (1, ~v) = pνn/En, so Tµν is symmetric.

For a perfect fluid, Tµν = diag(ρ, p, p, p), in the rest frame. So Tµν = (ρ+ p)uµuν +

pηµν . Illustrates a nice technique: find tensor expression from starting in the rest frame.

Example: TµνCC = −Ληµν , has ρCC = −pCC .

• Back to E&M: dp
µ

dτ = qFµνuν , where F 0i = Ei and F ij = εijkBk. Here Fµν = −F νµ.

Under Lorentz transformations, Fµ
′ν′

= Λµ
′

ρ Λν
′

σ F
ρσ. Maxwell’s equations are ∂µF

νµ = Jν

(which implies ∂νJ
ν = 0), and ∂µFνλ+cyclic= 0. Solve the second via Fµν = ∂µAν−∂νAµ,

with Aµ = (φ, ~A). Note gauge invariance Aµ → Aµ + ∂µf . In Coulomb gauge take

∂µA
µ = 0 and then get ∂2Aν = −Jν . Plane wave solutions like Aµ = εµ(k)eik·x.
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For a massive charged particle, S = −m
∫
dτ + q

∫
Aµdx

µ. Gives ~p = ∂L/∂~v =

γm~v + q ~A, and H = ~p · ~v − L = γm+ qφ =

√
m2 + (~p− q ~A)2 + qφ.

• Classical field theory, e.g. for a scalar field: S =
∫
d4xL(Φ, ∂µΦ), with EL equations

∂µ
∂L

∂(∂µΦ)
− ∂L

∂Φ
= 0.

Example, L = − 1
2∂

µΦ∂µΦ− V (Φ), get EL equations (∂2
t − ∇2)Φ + dV

dΦ = 0.

In E&M, we have instead a classical field theory for Aµ(x), L = − 1
4FµνF

µν + AµJ
µ.

Varying w.r.t. Aµ, the EL equations give the Maxwell equations ∂µF
νµ = Jν .

The energy-momentum tensor is the conserved Noether current related to space-time

translation invariance. Get

TµνE&M = FµλF νλ −
1

4
ηµνFλσFλσ.
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