6/1/11 Lecture 19 outline

• As we discussed last time, Einstein's equations

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = 8\pi G T_{\mu\nu}, \tag{1}$$

are 2nd order, non-linear PDEs for the metric $g_{\mu\nu}$. Today we'll briefly discuss solutions to these equations in a linearized approximation, applicable e.g. for discussing gravity waves. We'll also discuss solutions for $T^{fluid}_{\mu\nu}$, applicable for cosmology.

• Expand around flat space, $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$, taking $h_{\mu\nu}$ small and linearizing in it. So e.g. $g^{\mu\nu} \approx \eta^{\mu\nu} - h^{\mu\nu}$. We have

$$\Gamma^{\rho}_{\mu\nu} \approx \frac{1}{2} \eta^{\rho\sigma} (\partial_{\mu} h_{\nu\lambda} + \partial_{\nu} h_{\lambda\mu} - \partial_{\lambda} h_{\mu\nu}).$$

And we can drop the $\Gamma\Gamma$ terms in the Riemann tensor, so

$$R_{\mu\nu\rho\sigma} \approx \frac{1}{2} (\partial_{\rho}\partial_{\nu}h_{\mu\sigma} + \partial_{\sigma}\partial_{\mu}h_{\nu\rho} - [\mu \leftrightarrow \nu]).$$
$$R_{\mu\nu} \approx \frac{1}{2} (\partial_{\sigma}\partial_{\nu}h_{\mu\sigma} + \partial_{\sigma}\partial_{\mu}h_{\mu}^{\sigma} - \partial_{\mu}\partial_{\nu}h - \partial^{2}h_{\mu\nu}),$$
$$R \approx \partial_{\mu}\partial_{\nu}h^{\mu\nu} - \partial^{2}h.$$

Plug in to get $G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2}\eta_{\mu\nu}R$.

Can pick names for components, $h_{00} = -2\Phi$, $h_{0i} = w_i$, and $h_{ij} = 2s_{ij} - 2\Psi\delta_{ij}$. Then $\Gamma_{00}^0 = \partial_0 \Phi$, etc. The geodesic equation (taking $\lambda = \tau/m$ for massive particles)

$$\frac{dp^{\mu}}{d\lambda} + \Gamma^{\mu}_{\rho\sigma} p^{\rho} p^{\sigma} = 0$$

then gives, using $p^0 = dt/d\lambda = E$ and $p^i = Ev^i$,

$$\frac{dp^{\mu}}{dt} = -\Gamma^{\mu}_{\rho\sigma} \frac{p^{\rho} p^{\sigma}}{E},$$

or in components

$$\frac{dE}{dt} = -E(\partial_0 \Phi + 2(\partial_k \Phi)v^k - (\partial_{(j}w_{k)} - \frac{1}{2}\partial_0 h_{jk})v^j v^k),$$

(giving energy exchange between the particle and gravity) and

$$\frac{dp^i}{dt} = E[G^i + (\vec{v} \times H)^i - 2(\partial_0 h_{ij})v^j - (\partial_{(j}h_{k)i} - \frac{1}{2}\partial_i h_{jk})v^j v^k]$$

where $G^i \equiv -\partial_i \Phi - \partial_0 w_i$, and $H^i \equiv \epsilon^{ijk} \partial_j w_k$.

• Coordinate transformation, $\delta h_{\mu\nu} = \partial_{(\mu}\epsilon_{\nu)}$ similar to gauge transformations in E&M. Can pick convenient gauges, e.g. set $\Phi = w^i = 0$. The scalars Φ and Ψ are would-be scalars, but aren't physical. Neither is the would-be spin 1 component w_i . The only physical dof are the spin s = 2 quadrupole components s_{ij} . This looks like 2s + 1 = 5 components, but there's still more gauge redundancy. Actually, only 2 independent physical polarizations. Counting: $h_{\mu\nu}$ has 10 polarizations, minus 4 for $\delta x^{\mu} = \epsilon^{\mu}(x)$ symmetry, minus another 4 for the longitudinal condition, gives 2. Gauge symmetry "cuts twice," like in E&M where we have 4 - 1 - 1 = 2, here we have 10 - 4 - 4 = 2.

• Gravity waves in empty space. Take $T_{\mu\nu} = 0$ in Einstein's equations, and linearize them to get $\partial^2 s_{ij} = 0$. Call $h_{\mu\nu}^{TT} = 2s_{ij}$ for the *i*, *j* components and zero otherwise. Write a plane wave solution, $h_{\mu\nu}^{TT} = C_{\mu\nu}e^{ikx}$, which solves the wave equation for $k^2 = 0$: the graviton is massless. To keep it transverse (eliminate gauge dof), need $k^{\mu}C_{\mu\nu} = 0$. Taking $k^{\mu} = (\omega, 0, 0, \omega)$, find, 2 independent polarization components, $C_{11} = h_+$ and $C_{12} = h_X$. A ring of particles in the x - y plane will oscillate in a + shape in reaction to a gravitational wave with $h_+ \neq 0$, and $h_X = 0$. A gravitational wave with $h_X \neq 0$ and $h_+ = 0$ will cause them to oscillate in a X pattern. Can define $h_{R,L} = (h_+ \pm ih_X)/\sqrt{2}$ circular polarizations.

• Gravitational wave production. Let $I^{ij} = \int d^3x \mu(x,t) x^i x^j$ be the 2nd mass moment. The leading contribution far away, for weak sources, is

$$h_{ij} - \frac{1}{2}h\delta_{ij} \approx \frac{2}{r}\ddot{I}^{ij}(x,t)_{ret}.$$

Analogous to $\vec{A} \sim \dot{\vec{p}}_{ret}/r$ in E&M.

LIGO and LISA are laser interferometers, hoping to detect gravity waves.

• Now a bit of cosmology. Consider Einstein's equations with $T_{\mu\nu} = T_{\mu\nu}^{fluid} = (p + \rho)u_{\mu}u_{\nu} + pg_{\mu\nu}$. Take $p = w\rho$, where w is a constant; where the main cases are w = 0 for nonrelativistic matter, $w = \frac{1}{3}$ for massless matter a.k.a. radiation (recall your HW), and w = -1 for cosmological constant.

Consider first a cosmological constant, with $\rho = -p \equiv 3\kappa/8\pi G$. Then Einstein's equations give $R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = -3\kappa g_{\mu\nu}$ and a solution of this is $R_{\rho\sigma\mu\nu} = \kappa(g_{\rho\mu}g_{\sigma\nu} - g_{\rho\nu}g_{\sigma\mu})$, which has $R_{\mu\nu} = 3\kappa g_{\mu\nu}$ and $R = 12\kappa$. If $\kappa > 0$, i.e. positive CC, then the space has positive curvature, and is called deSitter (dS). If $\kappa < 0$, i.e. negative CC, then it's anti-de-Sitter (AdS). These are maximally symmetric spaces.

More interesting spacetimes have the RW form

$$ds^{2} = -dt^{2} + a^{2}(t) \left[\frac{dr^{2}}{1 - \kappa r^{2}} + r^{2} d\Omega^{2} \right],$$

where a(t) is the scale factor and now κ is the curvature of the spatial part of the metric. If $\kappa = 0$, the spatial part is flat, while if $\kappa > 0$ it has positive curvature (like an S^3) so "closed" and if $\kappa < 0$ it has negative curvature (hyperbolic space) so "open."

Can compute the Christoffel connection and curvature of this metric, e.g. $\Gamma_{11}^0 = a\dot{a}/(1-\kappa r^2)$, $\Gamma_{03}^3 = \dot{a}/a$, $\Gamma_{11}^1 = \kappa r/(1-\kappa r^2)$, etc and $R_{00} = -3\ddot{a}/a$ etc., and $R = 6(\ddot{a}/a + (\dot{a}/a)^2 + \kappa/a^2)$.

• Now consider $T_{\mu\nu} = T^{fluid}_{\mu\nu} = (p+\rho)u_{\mu}u_{\nu} + pg_{\mu\nu}$ with this spacetime metric. Note that $0 = \nabla^{\mu}T_{\mu\nu}$, for $\nu = 0$ gives $0 = -\partial_{0}\rho - 3\frac{\dot{a}}{a}(\rho+p)$. Setting $p = w\rho$, conservation of energy becomes

$$\frac{\dot{\rho}}{\rho} = -3(1+w)\frac{\dot{a}}{a},$$

so $\rho_M \sim a^{-3(1+w)}$. For matter, w = 0, and $\rho \sim a^{-3}$, i.e. the matter energy density dilutes as the space grows, proportional to the scale factor a, fitting with fixed amount of stuff. For radiation, $w = \frac{1}{3}$, get $\rho_R \sim a^{-4}$. This also makes sense: as the space grows $\sim a$, there is an extra energy density suppression factor of a compared with the matter case, because the wavelength of the radiation is being redshifted $\sim a$. Finally, for CC, get $\rho \sim a^0$, the energy density of vacuum is independent of the scale factor.

Einstein's equation for the 00 component gives

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho + 3p)$$

and for the spatial part *ij* gives another equation that leads to the other Friedman equation

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho - \frac{\kappa}{a^2}.$$

The Hubble parameter is defined by $H = \dot{a}/a$ and currently $H_0 \approx 70 km/sec/MPc$, where $Mpc = 3 \times 10^{24} cm$. In particle physics units, $H_0 \approx 10^{-33} eV$.

Define $\rho_{crit} = 3H^2/8\pi G$ and $\Omega = 8\pi G\rho/3H^3 = \rho/\rho_{crit}$, and then $\Omega - 1 = \kappa/H^2 a$.

Write $\rho_i = \rho_{i0}a^{-n_i}$, where $w_i = \frac{1}{3}n_i - 1$, and then the Friedman equation gives $H^2 = \frac{8\pi G}{3}\sum \rho_i$, where curvature is included as $\rho_c = -3\kappa/8\pi Ga^2$, with $w_i = -\frac{1}{3}$. The Friedman equation gives $a \sim t^{2/n}$. Matter dominated: $a = (t/t_0)^{2/3}$; radiation dominated, $a = (t/t_0)^{1/2}$; vacuum dominated: $a = e^{H(t-t_0)}$, where $H = 8\pi\rho/3 = \Lambda/3$.

If $\Omega_M + \Omega_{\Lambda} = 1$, then $\kappa = 0$, and the universe is flat. If $\Omega_M + \Omega_{\Lambda} > 0$ there is positive spatial curvature, $\kappa > 0$. Get

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho_M - 2\rho_\Lambda).$$

Einstein tried to get a static universe, so he imagined (his self-described "greatest blunder") that $\rho_M = 2\rho_\Lambda$. If $\rho_M - 2\rho_\Lambda > 0$, the universe decelerates and eventually re-collapses. Observation fits with $2\rho\Lambda - \rho_M > 0$, so the universe has accelerated expansion. Over time $\rho_M \to 0$, and ρ_Λ =constant, so it accelerates more in the future. Observation fits with, presently, $\Omega = 1$: $\Omega_{DE} \approx 75\%$, $\Omega_{DM} \approx 21\%$, $\Omega_{NM} \approx 4\%$.

• Consider a scalar field in the RW metric. Its equations of motion become, dropping the spatial derivative terms,

$$\ddot{\phi} + 3H\dot{\phi} + V'(\phi) = 0$$

the second term is "Hubble friction" from the Christoffel connection (can use $\nabla_{\mu} \nabla^{\mu} \phi = \frac{1}{\sqrt{-g}} \partial_{\mu} (\sqrt{-g} \partial^{\mu} \phi)$ with $\sqrt{-g} = a^3$.) . The Friedman equation now gives

$$H^{2} = \frac{1}{3m_{P}^{2}} (\frac{1}{2}\dot{\phi}^{2} + V(\phi).).$$

Inflation is built from such scalars with sufficiently gradual potentials so that the scalar field rolls down very slowly, and the potential looks approximately like a CC. The slow rolling then leads to $H \approx \text{constant}$, an exponential expansion of space.

• Take 225b next quarter for more!