
5/16/11 Lecture 15 outline

• This week we’ll return to some math topics, that we had deferred until now. As

we’ve already discussed, GR is based on a local (a.k.a. gauge) symmetry principle: general

coordinate transformations xµ → xµ
′
(x). Physical quantities and equations must trans-

form properly under such transformations. Scalar quantities (e.g. mass, charge, proper

time, action) are invariant, φ(x′) = φ(x). Quantities with indices, components of vectors or

dual vectors, or more generally tensors, must transform with appropriate “ ∂x
∂x” Jacobian

matrix, e.g. Aµ′ = ∂xν

∂xµ′
Aν or Tµ

′ν′
= ∂xµ

′

∂xµ
∂xν

′

∂xν T
µν . Indices are raised or lowered with the

metric.

We saw that, if φ(x) is a scalar, then ∂µφ(x) transforms properly as a vector. We saw

that if Aν(x) is a vector, then ∂µAν(x) does not quite transform as a tensor – there was a

good term, but also a bad term, from the derivative acting on the Jacobian matrix. (On

the other hand, we saw that ∂µAν − ∂νAµ does transform properly, since the bad term

cancels.)

This week we’ll learn about covariant derivatives, which is a general way to cancel the

bad term. It’s analogous to E&M, where we replace ∂µ → ∂µ + iqAµ, where the q is the

charge of what it’s acting on. As we’ll discuss, the covariant derivative is ∇µ = ∂µ + . . .,

where the . . . account for the Lorentz indices of what it’s acting on. For scalars, ∇µ = ∂µ,

that’s like q = 0 in the analogy. For vector, dual vector, or more generally tensors we

need the . . . to cancel the bad terms, so ∇µ acting on a tensor gives another tensor, both

transforming properly. As we’ll discuss, the . . . is something we’ve already met in our

discussion of geodesics: the Christoffel connection.

• Write the geodesic equation

duµ

dλ
+ Γµρσu

ρuσ = 0, uµ =
dxµ

dλ
.

Now uµ transforms properly as a 4-vector and λ (e.g. proper time for massive ob-

jects) transforms properly as a scalar. Recall that we derived the geodesic equation from

δ
∫ √
−ds2 = 0, and

∫ √
−ds2 transforms properly as a scalar. So, by construction, the

geodesic equation must transform properly as a vector equation under general coordinate

transformations xµ → xµ
′
. This is a special case of a parallel transport equation.

• Parallel transport. Consider the change of a tensor quantity when we move it along

some curve xµ(λ). For example, consider the change of a vector quantity V µ(x(λ)) when we

1



parallel transport it along the curve. If we change xµ → xµ
′
, then we know V µ

′
= ∂xµ

′

∂xµ V
µ.

Now think of everything as depending on τ , via xµ(τ). Then taking d
dτ of both sides,

dV µ
′

dτ
=
∂xµ

′

∂xµ
dAµ

dτ
+

∂2xµ
′

∂xν∂xλ
dxλ

dτ
Aν .

Once again, there is a good term, and a bad term here, so the LHS doesn’t transform

properly. We can fix it as above. Let’s discuss it more generally. As we transport the

vector along the curve, There is some accompanying rotation, V µ(λ) = Rµν (x(λ))V ν(0),

with the rotation depending on xµ, and we want it to be independent of the particular

curve. So V (λ + dλ) = R(λ + dλ)R−1(λ)V (λ) = [R(λ) + dλdRdλ ]R−1(λ)V (λ) = V (λ) +

dλdx
µ

dλ
∂R
xµ R

−1V (λ) = V (λ) + dλDVdλ . Adding in possible additional change to the vector,

the change rate is DV µ

dλ = dV µ

dλ + ∂xk

dλ
∂Rρσ
∂xk

R−1σλV
λ. In our case, we have

DV µ

dλ
=
dV µ

dλ
+ Γµρσ

dxρ

dλ
V σ.

This transforms properly, with the Christoffel connection term canceling the bad term

mentioned above. A vector is parallel transported if DV µ

dλ = 0. The geodesic equation can

then be written simply as
Duµ

dλ
= 0

i.e. the velocity is parallel transported.

The Γ term in the parallel transport accounts for the fact that moving vectors on

curved spaces can lead to path dependent outcomes. For example, you and your friend

start on the equator of the earth, each carrying a vector pointing due North. You carry

your vector up to the North pole, keeping it always pointing North. Your friend first carries

her vector 1/4 way around the earth, along the equator, and then brings it up to meet you

at the North pole, again keeping it always pointing North. When you meet, you find that

you’re vectors are no longer parallel – even though you both parallel transported them.

This effect is evidence of the curvature of the earth.

Parallel transporting is related to our desired covariant derivatives,

D

dλ
=
dxρ

dλ
∇ρ,

where this equation holds for acting on any kind of tensor whatsoever, with the appropriate

definition of ∇µ. When acting on a vector, we see from the above that dV µ

dλ = dxρ

dλ ∇ρV
µ

with

∇ρV µ =
∂V µ

∂xρ
+ ΓµρσV

σ.
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We can be sure that this will transform properly, because we can see its relation to the

geodesic equation and we know that transforms properly. But let’s check it explicitly:

∇ρ′V µ
′

=
∂

∂xρ′
V µ

′
+ Γµ

′

ρ′σ′V
σ′
,

where we now replace ∂
∂xρ′

= ∂xρ

∂xρ′
∂
∂xρ and V µ

′
= ∂xµ

′

∂xµ V
µ, and likewise for V σ

′
. Recalling

that Γµρσ = 1
2g
µλ(∂ρgλσ + ∂σgλρ − ∂λgρσ), we can obtain

Γµ
′

ρ′σ′ =
∂xµ

′

∂xµ
∂xρ

∂xρ′
∂xσ

∂xσ′ Γµρσ −
∂xρ

∂xρ′
∂xσ

∂xσ′

∂2xµ
′

∂xρ∂xσ
.

We call the first term good, because that’s the proper transformation of the indices, and

the second term bad. But that bad term, with its minus sign, is actually good: it’s just

what we wanted in ∇ρ, because it precisely cancels the bad term that we mentioned before,

from when ∂ρ′ acts on the ∂xµ
′

∂xµ in V µ
′
.

• How does ∇ρ act on Vµ, with a lower index? Note that φ = VµV
µ is a scalar, so

∇ρφ = V µ∇ρVµ + Vµ∇ρV µ = ∂ρφ. Alternatively, we can simply use Vµ = gµκV
κ. Either

way, we get

∇ρVµ =
∂Vµ
∂xρ

− ΓλρµVλ.

The minus sign ensured that ∇ρ′Vµ′ transforms properly, with the bad terms canceling.

• The generalization to tensors is clear, we just treat each index as above e.g.

∇µT ρσ = ∂µT
ρσ + ΓρµλT

λσ + ΓσµλT
ρλ.

If T ρσ transforms properly, then so does this ∇µT ρσ.

• Can verify ∇µgρσ = 0; the metric is covariantly constant, thanks to the Γ terms.

This is good, because we can then raise or lower indices on either side of the covariant

derivatives, e.g. ∇µVλ = ∇µ(gλσV
σ) = gλσ∇µV σ.

• Immediate point: conservation laws must transform properly. So charge conservation

becomes

∇µJµ = ∂µJ
µ + ΓµµσJ

σ = 0.

Conservation of energy + momentum becomes

∇µTµσ = ∂µT
µσ + ΓµµλT

λσ + ΓσµλT
µλ = 0.

These extra terms have a nice interpretation in terms of Stokes’, Gauss’ theorem. Let

|g| ≡ − detµν(gµν) (the minus sign is just to cancel g00 being negative). The spacetime
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integration measure d4x doesn’t transform properly as a scalar, because of the Jacobian

determinant, but
√
|g|d4x does. So all d4xs of flat spacetime need to be replaced with√

|g|d4x in GR. Correspondingly, Qencl =
∫ √
|g|d3xJ0 is the conserved quantity.

This fits with the above conservation law, because you can verify that

Γµµν =
1√
|g|
∂µ

√
|g|,

so find

∇µJµ =
1√
|g|
∂µ(

√
|g|Jµ).
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