
5/2/11 Lecture 11 outline

• Finish up geodesics in the Schwarzschild metric:

ds2 ≡ gµνdxµdxν = −(1− 2GM/rc2)dt2 + (1− 2GM/rc2)−1dr2 + r2dΩ2

The conserved quantities for a particle with 4-velocity uµ are

e ≡ −ξ · u = (1− 2M

r
)
dt

dτ
, ` ≡ η · u = r2 sin2 θ

dφ

dτ

which are the energy and angular momentum per unit mass, respectively, as seen by an

observer at r =∞, and u · u = −ε, where ε ≡ 1 for massive objects and ε ≡ 0 for massless

ones. We found that the radial motion is given by 1
2e

2 = 1
2 ( drdλ )2 + Veff (r),

Veff (r) = 1
2ε−

εGM

r
+

`2

2r2
− GMγ`2

r3
.

For a massive object we can multiply the above by m and use L = `m to make the first

two terms look familiar. The first term is the Newtonian potential, there only for massive

objects. The second term is the angular momentum barrier, there for both massive and

massless objects. The third term has γGR = 1, and γNewtonian = 0;since its ∼ 1/r3 its

negligible away from the origin but it dominates for sufficiently small r. It replaces the

infinite centrifugal barrier of Newtonian mechanics with a barrier of finite height.

• Draw pictures for timelike (massive) and null (massless) cases, compare / contrast

with Newtonian case. For a massive object, the shape of Veff (r) depends on the size of `.

For a massless object, ` affects only the overall scale size of Veff (r), not its shape.

• Look for circular orbits, dV/dr = 0: εMGr2c − `2rc + 3GML2γ = 0. For massless

case, ε = 0, no solution for γ = 0, but for γ = 1 get rc = 3GM . This is a local maximum,

unstable to perturbations. For the massive case, ε = 1, get

rc =
`2 ±

√
`4 − 12GM2`2

2GM
.

For `2 > 12GM2, the inner one is unstable and the outer one is stable. For ` � 1 get

rc ≈ `2/GM , which is the stable Newtonian result, and rc = 3GM , which is unstable.

For `2 = 12GM2, there is only 1 orbit, at rc = 6GM . This is the smallest possible

stable orbit. For `2 < 12GM2, there are no extrema of Veff , the potential just slides down,

down, down to the singularity at r = 0, goodbye.
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• Consider the null case. The minimum e needed to climb the barrier is given

by 1
2e

2 = Veff (r = 3GM) = `2/2(27)(GM)2, or `2/e2 = 27(GM)2. At infinity, we

have ` = be, where b is the impact parameter. To see that note that, at infinity,

`/e = r2 dφdλ/(1 −
2GM
r ) dtdλ → r2dφ/dt and so φ ≈ b/r, with dr/dt ≈ −1. So we see

that light with impact parameter less than bc = 33/2GM is captured. The capture cross

section is σc = 27π(GM)2.

• Study precession of the perihelion + deflection of light, multiplying the radial equa-

tion by (dλ/dφ)2 = r4/`2 to convert (dr/dλ)2 there into (dr/dφ)2:

(
dr

dφ
)2 + 2

r4

`2
Veff (r) =

r4

`2
e2.

So
dφ

dr
= ± `

r2
1√

e2 − 2V (r)
.

For an orbit, between the inner and outer turning points (the zeros of e2 = 2V (r)), get

∆φ = 2

∫ r2

r1

dr
`

r2
1√

e2 − 2V (r)
.

In the Newtonian case, γ = 0, can do the integral, get ∆φ = 2π, so the orbits come back

to themselves. For γ = 1, get ∆φ > 2π, so they overclose, and the perihelion precesses.
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