
4/27/11 Lecture 10 outline

• Continue, we’re going to solve for geodesics in the Schwarzschild metric:

ds2 ≡ gµνdxµdxν = −(1− 2GM/rc2)dt2 + (1− 2GM/rc2)−1dr2 + r2dΩ2

d2xν

dλ2
+ Γνµσ

dxµ

dλ

dxσ

dλ
= 0,

Γνµσ = 1
2g
ρν(∂µgρσ + ∂σgρµ − ∂ρgµσ)

These equations describe the motion of an object – regardless of its mass (equivalence

principle, but assuming it’s not so massive as to change the metric), it can be an apple or

a photon – in the background spacetime geometry created by some mass M .

The equations are complicated and its best to make use of the symmetries, just like

in Newtonian mechanics where we utilize rotational and time translational symmetry.

• The Schwarzschild metric is time independent and spherically symmetric. These

symmetries imply conservation laws for particles moving on geodesics. Using (t, r, θ, φ)

as our coordinates, we write the Killing vectors as ∂t → ξµ = (1, 0, 0, 0) and ∂φ → ηµ =

(0, 0, 0, 1) for time translations and rotations in φ, respectively. The conserved quantities

for a particle with 4-velocity uµ are

e ≡ −ξ · u = (1− 2M

r
)
dt

dτ
, ` ≡ η · u = r2 sin2 θ

dφ

dτ
.

Here e is like the energy per unit mass and ` is like the angular momentum per unit

mass. Note however that e isn’t the “KE” seen by a stationary observer, at fixed spatial

position. Such an observer measures the test object to have Êobj;obs = −gµνuµobjectuνobserver.
(Here we use the hat to mean energy per unit mass.) If the observer is stationary only

u0obs 6= 0, and is given by −g00(u0obs)
2 = −1, so uµobs = (−g00)−1/2ξ, and thus Êobj;obs =

eobj(−g00)−1/2. Now eobj is a constant, but g00 depends on r, so a stationary observer at

fixed r measures Eobj,obs depending on r. At r → ∞, g00 → −1, so eobj = Eobj,∞, the

energy observed by an observer at infinity. To summarize,

Eobj,obs(r) = Eobj,∞(1− 2GM

r
)−1/2, Êobj,∞ ≡ e

• This applies whether the observer is measuring the energy of an apple or a photon.

For photons, it implies the gravitational redshift

ωγ(r) = ωγ(∞)(1− 2GM

r
)−1/2.
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Therefore, a stationary observer at radius r1 will measure the photon as having frequency

ω1 = ω(r1) and another at radius r2 will measure it as having frequency ω2 = ω(r2), with

ω2

ω1
=

(
1− 2GM/r1
1− 2GM/r2

)1/2

.

E.g. for r � 2GM this gives ω2/ω1 ≈ 1 + Φ1 −Φ2, which is what we saw before from the

rocket picture. This formula makes sense for r > 2GM . A photon starting at r = 2GM

would be redshifted to zero frequency by the time it gets to infinity – in other words, it

can’t make it out.

We can also use this to determine the escape velocity needed for a massive object,

starting at fixed r, to make it to infinity. (For massless objects, there’s no notion of escape

velocity – it can always make it to infinity from any r > 2GM . For r ≤ 2GM , the light

doesn’t escape, as we saw from the redshift formula. To make it to infinity, need e = 1, so

the observer at fixed r needs to see the object as having

Êobj,obs,esc = (1− 2GM

r
)−1/2 ≡ (1− V 2

esc/c
2)−1/2,

so Vesc =
√

2M/R, coincidentally the same as in Newtonian mechanics. For r → 2GM ,

get Vesc → c.

• Back to the geodesic equations. Use constants e, `, and also u · u = −ε, where

ε ≡ 1 for massive objects and ε ≡ 0 for massless ones. Conservation of angular momentum

implies that orbits lie in a plane. E.g. if the particle is moving with dφ/dτ at an instant,

then ` = 0 for all time. Instead take θ = π/2 and uθ = 0, and it remains so for all time.

−
(

1− 2M

r

)−1
e2 +

(
1− 2M

r

)−1
(ur)2 + `2/r2 = −ε.

Define E ≡ 1
2 (e2 − ε) and then the equation can be written in a familiar form, E =

1
2 ( drdλ )2 + Veff (r), with

Veff (r) = −εGM
r

+
`2

2r2
− GM`2

r3
.

For a massive object we can multiply this by m and use L = `m to make the first two

terms look familiar. The first term is the Newtonian potential, there only for massive

objects. The second term is the angular momentum barrier, there for both massive and

massless objects. The third term is a new contribution when ` 6= 0, and since its ∼ 1/r3
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its negligible away from the origin but it dominates for sufficiently small r. It replaces the

infinite centrifugal barrier of Newtonian mechanics with a barrier of finite height.

• Next time: Draw pictures for massive and massless cases, compare / contrast with

Newtonian case.

• Look for circular orbits, dV/dr = 0: εMGr2c − `2rc + 3GML2γ = 0. Here γ = 1 for

GR vs γ = 0 for Newtonian. For massless case, ε = 0, no solution for γ = 0, but for γ = 1

get rc = 3GM . This is a local maximum, unstable to perturbations. For the massive case,

ε = 1, get

rc =
`2 ±

√
`4 − 12GM2`2

2GM
,

where the inner one is unstable and the outer one is stable.

For ` � 1 get rc ≈ `2/GM , which is the stable Newtonian result, and rc = 3GM ,

which is unstable.

• Study precession of the perihelion + deflection of light, multiplying the radial equa-

tion by (dλ/dφ)2 = r4/`2 to convert (dr/dλ)2 there into (dr/dφ)2:

(
dr

dφ
)2 − 2εgMr3/`2 + r2 − 2GMrγ = 2Er4/`2.
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