Physics 220, Lecture 5

• Last time:

$$A_{jl}^{ab} \equiv \sum_{g \in G} D_a(g^{-1}) |a, j\rangle \langle b, l | D_b(g) = \frac{|G|}{|r_a|} \delta_{ab} \delta_{jl} I.$$

Implies that $\sqrt{\frac{|r_a|}{|G|}} [D(g)]_{jk}$ are orthonormal functions of the group elements g. Also complete set.

• Characters. $\chi_D(g) = \text{Tr}D(g)$, satisfy an orthogonality relatiosn:

$$\frac{1}{|G|} \sum_{g \in G} \chi_{D_a}(g)^* \chi_{D_b}(g) = \delta_{ab},$$

and there is another orthogonality condition, involving the sum over irreps:

$$\sum_{a} \chi_{D_a}(g_{\alpha})^* \chi_{D_a}(g_{\beta}) = \frac{|G|}{k_{\alpha}} \delta_{\alpha\beta},$$

where α and β label the conjugacy classes, and k_{α} is the number of elements in that class.

The characters provide a complete set of class functions: any function of only conjugacy classes can be expanded in terms of the characters. As we already said,

$$F(g_1) = \sum_{a,j,k} c^a_{jk} [D_a(g_1)]_{jk}$$

Now on both sides replace g_1 with $g^{-1}g_1g$ and average over all g. Use the orthogonality relations to do the g sum and get finally

$$F(g_1) = \sum_{a,j} \frac{1}{|r_a|} c^a_{jj} \chi_a(g_1).$$

• Example: Z_3 and S_3 character tables again. (Get S_3 table 3 ways: using explicit expressions for irreps; using character orthogonality; using $g^p = e$ implies character is a sum of $|r_a|$ eigenvalues each satisfying $\lambda_i^p = 1$.)

• Any rep D can be written as a sum of irreps, $D = \sum_{a} m_{a}^{D} D_{a}$, and can find m_{a}^{D} by

$$m_a^D = \frac{1}{|G|} \sum_{g \in G} \chi_{D_a}(g)^* \chi_D(g)$$

Note that $\sum_{g \in G} \chi_D^*(g) \chi_D(g) = |G| \sum_a m_a^2$, so the rep is an irrep iff $\sum_{g \in G} \chi_D^*(g) \chi_D(g) = |G|$. Gives a quick test to see if a rep is an irrep. For example, the regular rep has $\sum_{g \in G} \chi_D^*(g) \chi_D(g) = |G|^2$, so not an irrep.

Example: show that the regular rep has $m_a^R = |r_a|$. Fits with $|G| = \sum_a |r_a|^2$. Construct the projection operators for non-irreps:

$$P_{a} = \frac{|r_{a}|}{|G|} \sum_{g \in G} \chi_{D_{a}}(g)^{*} D(g).$$

This projects on D_a . To see that, replace D(g) with $[D_b(g)]_{jk}$ and get $\delta_{ab}\delta_{jk}$.

Example: 3d representation of S_3 . Construct projection operators to show how $D_3 = D_0 + D_2$.

• Decomposing tensor products of irreps into sums of irreps , e.g. for S_3 ($D_2 \times D_2 = D_0 + D_1 + D_2$ etc.).