Physics 220, Lecture 15

 \star Reference: Georgi chapters 6-8

• Recall example of $SU(3)$ fundamental rep, $T_a = \frac{1}{2}$ $\frac{1}{2}\lambda_a$, Gell-Mann matrices, with $\lambda_3 = diag(1, -1, 0)$ and $\lambda_8 = \frac{1}{\sqrt{2}}$ $\frac{1}{3}(1, 1, -2)$. (Normalize to Tr $(T^a T^b) = \frac{1}{2} \delta^{ab}$. Since a rep and conjugate rep have T_a and $-T_a^*$ respectively, note 3 and $\overline{3}$ differ. $\lambda_{1,2}$ are Pauli matrices $\sigma_{1,2}$ in the (1, 2) components, $\lambda_{4,5}$ are $\sigma_{1,2}$ in the (1,3) entries, and $\lambda_{6,7}$ are similar in the (2,3) entries. So $E_{\pm 1,0} = \frac{1}{\sqrt{2}}$ $\frac{1}{2}(T_1 \pm iT_2), E_{\pm 1/2, \pm \sqrt{3}/2} = \frac{1}{\sqrt{3}}$ $\frac{1}{2}(T_4 \pm i T_5),$ $E_{\mp 1/2,\pm \sqrt{3}/2} = \frac{1}{\sqrt{3}}$ $\frac{1}{2}(T_6 \pm iT_7).$

• Last time: by considering the adjoint representation, write all the generators as the Cartan H_i , $i = 1...r = \text{rank}(G)$, and generators labeled by root vectors α , such that $[H_i, E_\alpha] = \alpha_i E_\alpha, [E_\alpha, E_{-\alpha}] = \alpha \cdot H.$

• Lots of $SU(2)$ s: write $E^{\pm} = |\alpha|^{-1} E_{\pm \alpha}$ and $E_3 = |\alpha|^{-2} \alpha \cdot H$ to get an $SU(2)$ subalgebra.

• Use to argue that if α is a root then $k\alpha$ is only a root if $k = 0, 1, -1$, and that there can only be a single root with any non-zero weight α : another such root would have $E_3|E'_\alpha\rangle = |E'_\alpha\rangle$, but $0 = \langle E_\alpha|E'_\alpha\rangle$ implies $E^-|E'_\alpha\rangle = 0$, so lowest weight, but on the other hand $E_3|E'_\alpha\rangle = |E'_\alpha\rangle$ so like $J_3 = 1$. Impossible to have $J_3 = 1$ lowest weight state. Likewise, $k\alpha$ for any k integer or half integer is similarly impossible.

Also, for any rep, $E_3|\mu, D\rangle = \frac{\alpha \cdot \mu}{\alpha \cdot \alpha}$ $\frac{\alpha \cdot \mu}{\alpha \cdot \alpha}|\mu, D\rangle$, so $\frac{2\alpha \cdot \mu}{\alpha^2}$ is an integer. Can raise such a state using E^+ at most some integer p times before getting zero, and can lower using E^- at most some integer q times before getting zero. Implies:

$$
\frac{\alpha \cdot (\mu + p\alpha)}{\alpha^2} = \frac{\alpha \cdot \mu}{\alpha^2} + p = j, \qquad \frac{\alpha \cdot \mu}{\alpha^2} - q = -j.
$$

So

$$
\frac{\alpha \cdot \mu}{\alpha^2} = -\frac{1}{2}(p - q). \tag{1}
$$

Applying this to the adjoint representation for any two roots α and β , conclude that

$$
\cos^2 \theta_{\alpha\beta} = \frac{(\alpha \cdot \beta)^2}{\alpha^2 \beta^2} = \frac{(p-q)(p'-q')}{4}, \qquad = 0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}.
$$

and then $\theta_{\alpha\beta}$ is either $\pi/2$, $\pi/6$ or $2\pi/6$, $\pi/4$ or $3\pi/4$, $\pi/6$ or $5\pi/6$.

• Highest weights: Chose a basis for the Cartan and call a weight positive or negative based on the sign of the first non-zero entry. Clearly arbitrary, but fine. Now say $\mu > \nu$ if $\mu - \nu$ is positive, and find one of the weights is highest in this ordering μ_{max} . In adjoint,

the positive roots are raising operators and the negative roots are lowering, so the raising operators must annihilate μ_{max} . Then can fill out the irrep by applying lowering operators to μ_{max} .

• Simple roots: positive roots that can't be written as sums of other positive roots. If a weight is annihilated by all simple roots, it is μ_{max} .

If α and β are simple roots, then $\alpha-\beta$ isn't a root. E.g. if $\beta-\alpha > 0$ then $\alpha+(\beta-\alpha) = \beta$ would violate the condition that β can't be a sum of two positive roots.

Therefore, $E_{-\alpha}|E_{\beta}\rangle = E_{-\beta}|E_{\alpha}\rangle = 0$ so $q = q' = 0$ in (1):

$$
\frac{\alpha \cdot \beta}{\alpha^2} = -\frac{p}{2}, \qquad \frac{\beta \cdot \alpha}{\beta^2} = -\frac{p'}{2}.
$$

So $\beta^2/\alpha^2 = p/p'$ and $\cos \theta_{\alpha\beta} = -\sqrt{pp'}/2$, which implies $\frac{\pi}{2} \le \theta_{\alpha\beta} < \pi$.

Implies that the simple roots are linearly independent: $\gamma = \sum_{\alpha} x_{\alpha} \alpha$ can't vanish unless all $x_\alpha = 0$. To try to get $\gamma = 0$, would need some x_α positive and some negative, i.e. $\gamma = \mu - \nu$ where μ and ν each have all positive coefficients. But then $\gamma^2 > 0$ since all simple roots have $\alpha \cdot \beta \leq 0$.

The simple roots are linearly independent and also complete: the number of them equals the rank of the group. They form a basis for all roots. If not, there would be a vector ξ orthogonal to all the simple roots and that would imply that it's orthogonal to all roots and then that $[\xi \cdot H, \phi] = 0$, showing that $\xi \cdot H$ commutes with everything, violating the assumption that our algebra is simple.

Any positive root is of the form $\phi_k = \sum_{\alpha} k_{\alpha} \alpha$ where α runs over the simple roots and all $k_{\alpha} > 0$. Here $k = \sum_{\alpha} k_{\alpha}$. So ϕ_1 are the simple roots. Given a ϕ_{ℓ} , consider $E_{\alpha}|\phi_{\ell}\rangle$. Since $2\alpha \cdot \phi_{\ell} = -\alpha^2(p-q)$, can determine q and check sign of p; $\phi_{\ell} + \alpha$ is a root iff $p > 0$. E.g. take $\phi_1 = \beta$ a simple root and then note that if $\alpha \cdot \beta = 0$ then $\alpha + \beta$ is not a root, whereas if $\alpha \cdot \beta = -p\alpha^2/2$ with $p \neq 0$, then $p > 0$ and $\alpha + \beta$ is a root, $\alpha + \beta = \phi_2$.

For $SU(3)$, the simple roots satisfy $\alpha_1^2 = \alpha_2^2 = 1$, and $\alpha_1 \cdot \alpha_2 = -\frac{1}{2}$ $\frac{1}{2}$. Follows that $\alpha_1 + \alpha_2$ is a root, but adding any more α_1 or α_2 s gives something that's not a root.

• Dynkin diagrams: each simple root is written as a node, with $0,1,2,3$ lines connecting nodes if the angle is 90, 120, 135, 150[°] respectively.

• Under the $SU(2)$ associated with α_i , any weight has $E_3|\mu\rangle = \frac{2H\cdot\alpha_i}{\alpha_i^2}|\mu\rangle$ and the eigenvalue is $2\mu \cdot \alpha_i/\alpha_i^2 = q_i - p_i$. Can use $q_i - p_i$ to label the weights.

The Cartan matrix for the simple roots is

$$
A_{ji} \equiv 2 \frac{\alpha_i \cdot \alpha_j}{\alpha_i^2}
$$

The diagonal entries are 2 and the off-diagonals are $-p$.

The j-th row give the $q_i - p_i$ values of the simple root α_i . Writing a positive root as $\phi = \sum_j \alpha_j$, it has $q_i - p_i = \sum_j k_j A_{ji}$. Raising $\phi \to \phi + \alpha_j$ shifts $q_i - p_i \to q_i - p_i + A_{ji}$. At $k = 0$ have the Cartan, with $E_3 = q_i - p_i = 0$. At $k = 1$ have the simple roots. Continue raising / lowering until the diagram is complete.

Example: $SU(3)$, with $A =$ $\begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$, and G_2 with $A =$ $\begin{pmatrix} 2 & -1 \\ -3 & 2 \end{pmatrix}$. G_2 has $\alpha_1 = (0, 1)$ and $\alpha_2 = (\sqrt{3}/2, -3/2)$ with $\alpha_1^2 = 1$ and $\alpha_2^2 = 3$ and $\alpha_1 \cdot \alpha_2 = -3/2$, so the angle between them is 150°. The raising operators are $E_1^+ = E_{\alpha_1}$ and $E_2^+ = \frac{1}{\sqrt{2}}$ $\frac{1}{3}E_{\alpha_2}$. The positive roots are: $\alpha_1 + \alpha_2$, $2\alpha_1 + \alpha_2$, $3\alpha_1 + \alpha_2$, $3\alpha_1 + 2\alpha_2$.

Can construct algebra, e.g. $\left| \left[E_{\alpha_1}, E_{\alpha_2} \right] \right| = \sqrt{\frac{3}{2}} E_{\alpha_1 + \alpha_2}$ etc.