Physics 220, Lecture 14

 \star Reference: Georgi chapters 6-7, first half of ch 8 if time.

• Start SU(3), in particular mention $SU(3)_F$ and the (u, d, s) quark model. Plot $(T_3 = Q + Y/2, T_8 = \sqrt{\frac{3}{2}}Y)$, where Y = B + S is the "hypercharge" and S is the strangeness (strangely, the strange quark has strangeness -1). Spin j = 0 mesons (pions and Kaons), spin j = 1 mesons in the $\mathbf{8} \oplus \mathbf{1}$. Baryons eg $j = \frac{1}{2}$ in the $\underline{8}$ and $j = \frac{3}{2}$ in the $\mathbf{10}$. Problems with the model, e.g. spin-statistics, solved by $SU(3)_C$. Also $J/\psi \sim c\bar{c}$ meson discovery; no $SU(4)_F$.

• Roots and weights. Cartan generators, $H_{i=1...r}$ Hermitian, mutually commuting, with $\text{Tr}(H_iH_j) = k_D\delta_{ij}$. Eigenvectors $|\mu, x, D\rangle$ with eigenvalues $H_i \to \mu_i$, write as weight vectors μ . Here μ is the generalization of m in SU(2).

In the adjoint rep, label basis with the generators: $|T_a\rangle$, with $T_a|T_b\rangle = if_{abc}|T_c\rangle = |[T_a, T_b]\rangle$. Inner product is $\langle T_a|T_b\rangle = \lambda^{-1} \text{Tr}(T_a^{\dagger}T_b)$. So $H_i|H_j\rangle = 0$ and $H_i|E_{\alpha}\rangle = \alpha_i|E_{\alpha}\rangle$, i.e. $[H_i, E_{\alpha}] = \alpha_i E_{\alpha}$ and $\langle H_i|H_j\rangle = \delta_{ij}$ and $\langle E_{\alpha}|E_{\beta}\rangle = \delta_{\alpha\beta}$. Take adjoint of $[H_i, E_{\alpha}] = \alpha_i E_{\alpha}$ to see that $E_{\alpha}^{\dagger} = E_{-\alpha}$. Here α_i are the weights of the adjoint rep, which are called the roots. Now note that in a general irrep we have that $E_{\pm\alpha}$ acts on $|\mu, D\rangle$ to raise and lower the roots, $\mu \to \mu \pm \alpha$. In the adoint rep, $E_{\alpha}|E_{-\alpha}\rangle = \beta_i|H_i\rangle$, where introducing an inner product and norm shows that $\beta_i = \alpha_i$, so $[E_{\alpha}, E_{-\alpha}] = \alpha \cdot H$.

• Lots of SU(2)s: write $E^{\pm} = |\alpha|^{-1}E_{\pm\alpha}$ and $E_3 = |\alpha|^{-2}\alpha \cdot H$ to get an SU(2) subalgebra.

• Illustrate in SU(3)

• SU(3) fundamental rep, $T_a = \frac{1}{2}\lambda_a$, Gell-Mann matrices, with $\lambda_3 = diag(1, -1, 0)$ and $\lambda_8 = \frac{1}{\sqrt{3}}(1, 1, -2)$. (Normalize to $\text{Tr}(T^aT^b) = \frac{1}{2}\delta^{ab}$. Since a rep and conjugate rep have T_a and $-T_a^*$ respectively, note **3** and **3** differ. $\lambda_{1,2}$ are Pauli matrices $\sigma_{1,2}$ in the (1, 2) components, $\lambda_{4,5}$ are $\sigma_{1,2}$ in the (1, 3) entries, and $\lambda_{6,7}$ are similar in the (2, 3) entries. So $E_{\pm 1,0} = \frac{1}{\sqrt{2}}(T_1 \pm iT_2), E_{\pm 1/2,\pm\sqrt{3}/2} = \frac{1}{\sqrt{2}}(T_4 \pm iT_5), E_{\pm 1/2,\pm\sqrt{3}/2} = \frac{1}{\sqrt{2}}(T_6 \pm iT_7).$