Physics 220, Lecture 13

- \star Reference: Georgi chapters 4-5.
- Illustrate Wigner Eckart for $SU(2)$.

Operators transform under rotations, O_m^j with $[J_a, O_m^j] = O_{m'}^j[J_a^j]_{mm'}$.

Example: \vec{r} , write as $r_0 = r_3$, and $r_{\pm 1} = [J_{\pm}, r_0] = \mp (r_1 \pm ir_2) / \sqrt{2}$.

Wigner-Eckart accounts for how $O_{m_1}^{j_1}|j_2, m_2, \alpha\rangle$ transforms, exactly like the tensor product of representations:

$$
\langle jm\beta|O^{j_1}_{m_1}|j_2m_2,\alpha\rangle = \delta_{m,m_1+m_2}\langle jm,j_1j_2|j_1m_1,j_2m_2\rangle\langle j\beta|O^{j_1}|j_2\alpha\rangle.
$$

Example: consider the operators r_i for j_2 and $j = \frac{1}{2}$ $\frac{1}{2}$. If $\langle \frac{1}{2}$ $\frac{1}{2}, \frac{1}{2}$ $\frac{1}{2}$, $\alpha |r_3| \frac{1}{2}$ $\frac{1}{2}, \frac{1}{2}$ $\frac{1}{2}, \beta$ = A, Wigner-Eckart relates this to $\langle \frac{1}{2} \rangle$ $\frac{1}{2}, -\frac{1}{2}$ $\frac{1}{2}, \alpha |r_{-}| \frac{1}{2}$ $\frac{1}{2}$, $\frac{1}{2}$ $\frac{1}{2}, \beta$ and $\langle \frac{1}{2} \rangle$ $\frac{1}{2}$, $\frac{1}{2}$ $\frac{1}{2}, \alpha |r_+|\frac{1}{2}$ $\frac{1}{2}, -\frac{1}{2}$ $\frac{1}{2}, \beta$: these all correspond to the $j = (1/2)$ on the RHS of $(1/2) \otimes (1) = (1/2) \oplus (3/2)$ (the $(3/2)$) would correspond to another, independent matrix element coefficient). To get the relation use e.g. $|3/2, 3/2\rangle = r_{+}|\frac{1}{2}$ $\frac{1}{2}, \frac{1}{2}$ $\frac{1}{2}$, β and $|3/2, \frac{1}{2}$ $\frac{1}{2}\rangle=\sqrt{\frac{2}{3}}$ $\frac{\sqrt{2}}{3}J^-|3/2,3/2\rangle=\sqrt{\frac{2}{3}}$ $rac{2}{3}r_0|\frac{1}{2}$ $\frac{1}{2}, \frac{1}{2}$ $\frac{1}{2}, \beta \rangle +$ √ 1 $\frac{1}{3}r+|\frac{1}{2}|$ $\frac{1}{2}, -\frac{1}{2}$ $\frac{1}{2}$, β and $\left|\frac{1}{2}\right|$ $\frac{1}{2}, \frac{1}{2}$ $\frac{1}{2}$ $\rangle = \frac{1}{\sqrt{2}}$ $rac{1}{3}r_0\left|\frac{1}{2}\right|$ $\frac{1}{2}, \frac{1}{2}$ $\langle \frac{1}{2},\beta\rangle-\sqrt{\frac{2}{3}}$ $rac{2}{3}r_{+}|\frac{1}{2}$ $\frac{1}{2}, -\frac{1}{2}$ $\frac{1}{2}, \beta$. Using $0 = \langle \frac{1}{2} \rangle$ 2 1 $rac{1}{2}\alpha\left|\frac{3}{2}\right|$ 2 1 $\frac{1}{2}$ see e.g. $\langle\frac{1}{2}$ $\frac{1}{2}, \frac{1}{2}$ $\frac{1}{2}, \alpha |r_+|\frac{1}{2}$ $\frac{1}{2}, -\frac{1}{2}$ $\langle \frac{1}{2}, \beta \rangle = -\sqrt{2}A$. Conclude e.g. $\langle \frac{1}{2}, \beta \rangle$ $\frac{1}{2}, \frac{1}{2}$ $\frac{1}{2}$, $\alpha |r_1|\frac{1}{2}$ $\frac{1}{2}, -\frac{1}{2}$ $\frac{1}{2}\beta\rangle = A.$

• Isospin: $N =$ $\int p$ \overline{n} \setminus , created by $a_{N,I,\alpha}^{\dagger}$, with $I = \pm \frac{1}{2}$ $\frac{1}{2}$. These are fermionic operators so they anticommute. In particular, the bound state of two must be net antisymmetric in spin and isospin labels. Quarks $\begin{pmatrix} u \\ d \end{pmatrix}$ d \setminus likewise form an isospin doublet. States are antisymmetric under interchange, so e.g. acting with two creation operators on the vacuum gives either $I = 0$, $s = 1$ (deuteron, ρ vector meson) or $I = 1$, $s = 0$ (pions), since quarks $\sqrt{ }$ \overline{u} d \setminus form an isospin doublet. Combine 3 quarks to get $I = \frac{1}{2}$ $rac{1}{2}$ (i.e. $\begin{pmatrix} p \\ n \end{pmatrix}$ n \setminus) or $I = 3/2$ (the ∆).

• Isospin application examples: $N + N \rightarrow D + \pi$, $\pi + N \rightarrow \pi + N$.