Physics 220, Lecture 12

- \star Reference: Georgi chapters 3-6.
- Last time: Clebsch-Gordon coefficients:

$$|jm, j_1 j_2\rangle = \sum_{m_1} \sum_{m_2} |j_1 m_1, j_2 m_2\rangle \langle j_1 m_1, j_2 m_2 | jm, j_1 j_2\rangle.$$

Examples $(\frac{1}{2} \otimes \frac{1}{2} = 0 \oplus 1, \frac{1}{2} \otimes 1 = \frac{3}{2} \oplus \frac{1}{2}).$

• The fundamental $(j = \frac{1}{2})$ of SU(2) acts on vectors u_{α} , with $\alpha = 1, 2$: $u \to gu$. Upper and lower indices: upper index transforms as $\tilde{u} \to \tilde{u}g^{\dagger}$, such that δ^{β}_{α} transforms as $1 \to g1g^{\dagger} = 1$ since the matrices are unitary. Can also consider the complex conjugate representation, acting on v^{α} . The difference between a rep and its conjugate is is $T_a \to -T_a^*$, which satisfy the same Lie algebra. For SU(2) these are isomorphic. $\epsilon_{\alpha\beta}$ is an invariant tensor. More general tensors $u_{\alpha_1...\alpha_\ell}$. The spin j representation corresponds to the tensor $u_{\alpha_1...\alpha_j}$, where the indices are symmetrized. For example, the j = 1 state is $X^{\alpha}_{\beta} = \sigma_i x^i$, which transforms as $X \to UXU^{-1}$. Since $\vec{x} \cdot \vec{x} = -\det X$, the invariance follows immediately. This map demonstrates how SU(2) is a double cover of the SO(3) rotation group: the SU(2) elements U and -U correspond to the same rotation.

Consider tensor $u^{i_1...i_{2j}}$, completely symmetrized, corresponding to the spin j representation. It has $J_3 = m$ if there are j + m indices equal to 1, and j - m indices equal to 2. There are $\binom{2j}{j+m}$ ways to do this. So write $|jm\rangle = \binom{2j}{j+m}^{-1/2} |v_{j,m}\rangle$, where $|v_{jm}\rangle$ is a bunch of Kronecker deltas. Application: use to derive the Clebsch $\langle j_1 + j_2, m_1 + m_2 | j_1 m_1; j_2 m_2 \rangle$.