Physics 220, Lecture 10

- \star Reference: Georgi chapters 2-5.
- Last time: $g(\alpha) = e^{i\alpha_A T^A}$, and group multiplication requires

$$
[T^A, T^B] = i f_{ABC} T^C,
$$

and then $\gamma_C = \alpha_A \beta_B f_{ABC}$. If there is a unitary rep, the T^A are hermitian and then it follows that the f_{ABC} are real, since $[T^A, T^B]^{\dagger} = [T^B, T^A]$. Can normalize by $Tr(T_a T_b) =$ $k_a \delta_{ab}$, where $k_a > 0$ for compact Lie algebras, and can take all $k_a = \lambda$. Then $f_{abc} =$ $-i\lambda^{-1}\text{Tr}([T^a, T^b]T^c)$ is completely antisymmetric in the 3 indices. Simplest case: f_{ABC} = ϵ_{ABC} , with $A = 1 \dots 3$.

Georgi: fun with exponentials, e.g. $\partial_{\alpha_b} e^{i\alpha_a X^a} = \int_0^1 ds e^{is\alpha_a X_a} (iX_b) e^{i(1-s)\alpha_c X_c}$.

• Adjoint representation: $(T_a)_{bc} = -i f_{abc}$. Since f_{abc} is completely antisymmetric and real, T_a in the adjoint representation are hermitian, showing that the adjoint rep is unitary.

• $SO(3)$, $O(3)$, and $SU(2)$: $f_{abc} = \epsilon_{abc}$; $T_a = J_a$ angular momentum $(\hbar = 1)$.

 $SO(3)$ rotations: $R_{\widehat{n}}(\psi)$, with $R_{\widehat{n}}(\pi) = R_{-\widehat{n}}(\pi)$: ball with antipodal points on boundary identified. $R(\alpha, \beta, \gamma) = R_3(\alpha)R_2(\beta)R_3(\gamma)$. In $SU(2)$:

$$
R_{j=1/2}(\alpha,\beta,\gamma) = \begin{pmatrix} e^{-i(\alpha+\gamma)/2} \cos(\beta/2) & -e^{-i(\alpha-\gamma)/2} \sin(\beta/2) \\ e^{-i(\alpha-\gamma)/2} \sin(\beta/2) & e^{i(\alpha+\gamma)/2} \cos(\beta/2) \end{pmatrix}.
$$

The Cartan subalgebra is the subalgebra of commuting generators. Here it is one dimensional, generated by say J_3 . The basis of a rep can be chosen to be eigenstates of the Cartan, and let j label the highest eigenvalue, $J_3|j,\alpha\rangle = j|j,\alpha\rangle$. Using $J^{\pm} = (J_1 \pm iJ_2)/\sqrt{2}$ and $[J_3, J_{\pm}] = \pm J_{\pm}$ and $[J_+, J_-] = J_3$, then J_+ must annihilate the state with highest J_3 eigenvalue. Since J_- lowers the eigenvalue, $J_{\pm}|m,\alpha\rangle = N_m|m-1,\alpha\rangle$; also $J^+|m-1,\alpha\rangle =$ $N_m|m,\alpha\rangle$. Get $N_j = \sqrt{j}$ and $N_m^2 = N_{m+1}^2 + n$. Solution is $N_m = \frac{1}{\sqrt{j}}$ 2 $\sqrt{(j+m)(j-m+1)}$. Since lowering must eventually also stop giving new states, j is integer or half-integer. Write $|jm\rangle$, with $J_{\pm}|jm\rangle = \sqrt{(j \pm m + 1)(j \mp m)/2}|j, m \pm 1\rangle$.

For $j=\frac{1}{2}$ $\frac{1}{2}, J_a = \frac{1}{2}$ $\frac{1}{2}\sigma_a$; fundamental representation. For $j=1$ (adjoint rep),

$$
J_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad J_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & -i & 0 \\ i & 0 & -i \\ 0 & i & 0 \end{pmatrix}, \quad J_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}.
$$