
6/5/09 Lecture outline

⋆ Reading: Zwiebach chapter 14 and 17.

• Summarize from last two lectures. The relativistic open string spectrum is given by

|λ〉 =
∞∏

n=1

D−1∏

I=2

(aI†n )λn,I |pµ〉 with M2 = −p2 = (N⊥−1)/α′, N⊥ =
∞∑

n=1

D−1∑

I=1

nλn,I . (1)

Where consistency requires D = 26.

The closed string is like a tensor product of two copies of the open string, corresponding

to the left movers and right movers. In particular, the closed string states are

|λ, λ̃〉 = [
∞∏

n=1

D−1∏

I=2

(aI†n )λn,I ][
∞∏

n=1

D−1∏

I=2

(ãI†n )λ̃n,I ]|pµ〉

M2 = −p2 = 2(N⊥ + Ñ⊥ − 2)/α′, N⊥ =
∞∑

n=1

D−1∑

I=1

nλn,I , N⊥ =
∞∑

n=1

D−1∑

I=1

nλ̃n,I ,

(2)

where there is a requirement that N⊥ = Ñ⊥ to have σ translation invariance.

• Let’s count the states by defining f(x) = Trstatesx
α′M2

. Find

fos(x) = x−1
∞∏

n=1

1

(1− xn)24

where we set D − 2 = 24. Similarly, for the closed string case, we have

fclosed(x, x̄) = fos(x)fos(x̄),

where we need to project out those states with different powers of x and x̄.

• Now consider the superstrings. The bosonic string has fields XI(τ, σ), which are

D − 2 worldsheet scalars. Now we introduce D − 2 worldsheet fermions

ΨR(τ − σ)I , ΨI
L(τ + σ).

Here R and L are for right and left moving, and I = 2 . . .D−2 (spacetime vector indices).

There are two choices of boundary conditions for left movers, and similarly two choices for

right movers:

ΨI(τ, σ + 2π) = ±ΨI (τ, σ), + : Ramond, − : Nevu-Schwarz.
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In the NS sector we have

ΨI
NS ∼

∞∑

n=−∞

bI
n+

1
2

e−i(n+
1
2 )(τ−σ).

In the R sector we have

ΨI
R ∼

∞∑

n=−∞

dPn e
−in(τ−σ).

The modes satisfy

{bIr, bJs } = δr+s,0δ
IJ , {dIn, dJm} = δn+m,0δ

IJ ,

where {A,B} ≡ AB + BA is the anti-commutator, reflecting the fermionic nature of the

modes.

The NS sector states are

|λ, ρ〉NS =
D−2∏

I=2

(aI†n )λn,I

D−1∏

J=2

∏

r=
1
2 ,

3

2
...

(bJ−r)
ρr,J |NS〉 ⊗ |p〉,

where the ρr,J are either zero or one (Fermi statistics).

The R sector states are

|λ, ρ〉R =

D−2∏

I=2

∏

n

(aI†n )λn,I

D−1∏

J=2

∞∏

m=1

(dJ−m)ρm,J |RA〉 ⊗ |p〉,

Here |RA〉 are the Ramond ground states, which are complicated thanks to the zero modes

dI0. We take half of them 1
2 (D−2) to be creation operators and the other half to annihilate

the vacuum. So then there are 2
1
2 (D−2) degenerate states. These form two equal groups,

depending on whether there are an even number of creation operators, or an odd number.

The former is called the R− sector and labeled by |Ra〉, and the latter is called the R+

sector and labeled by |Rā〉. The ± refer to worldsheet fermion number (−1)F , where the

vacuum has fermion number (−1)F = −1.

• The mass-squared operator in the NS sector before normal ordering is

α′M2 = 1
2

∑

p6=0

αI
−pα

I
p +

1
2

∑

r=n+
1
2

rbI−rb
I
r.

Re-ordering, we have

α′M2 = N⊥ + 1
2(D − 2)(− 1

12
− 1

24
),
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where the −1/12 was seen in the bosonic case, and the −1/24 is the analog coming from

reordering the br. As in the bosonic case, the commutator [M−I ,M−J ] = 0 determines the

spacetime dimension, here to be D = 10. So in the NS sector the mass squared operator is

α′M2 = −1
2 +N⊥, N⊥ =

∞∑

p=1

pa†Ip a
I
p +

∑

r=
1
2
, 3
2
,...

rbI−rb
I
r.

Similarly, in the R-sector, we have

α′M2 = 1
2

∑

p6=0

αI
−pα

I
p +

1
2

∑

m

mdI−md
I
m.

Re-ordering we have α′M2 = N⊥ + 1
2(D − 2)(− 1

12 + 1
12), and the constants cancel, so

α′M2 = N⊥, N⊥ =

∞∑

p=1

pa†Ip a
I
p +

∞∑

m=1

mdI−md
I
m.

In particular, the Ramond ground states are massless.

• The NS spectrum generating function is

fNS(x) =
1√
x

∞∏

n=1


1 + xn−

1
2

1− xn




8

.

The R sector spectrum generating function is

fR±(x) = 8

∞∏

n=1

(
1 + xn

1− xn

)8

where 8 accounts for the ground state degeneracy associated with dI0, in either the R+ or

the R− sector. We should also GSO project the NS sector, i.e. throw away states with

(−1)F = −1 to get the NS+ states, with generating function

fNS+(x) =
1

2
√
x




∞∏

n=1



1 + xn−
1
2

1− xn




8

−



1− xn−
1
2

1− xn




8

 .

This projects out the tachyon – nice! Moreover, the states in fR± are spacetime fermions,

whereas those in fNS,+ are spacetime bosons, and their spectrum is degenerate, thanks to

the identity fR±(x) = fNS+(x) (which was proven as a mathematical identity around 150

years before the superstring was even first thought of!).
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• For closed superstrings we can take the NS+ sector for both left and right movers,

and the R− sector for both left and right movers; this is the IIB superstring. Or we could

take the NS+ sector for both left and right movers, and the R− sector for left movers and

the R+ sector for right movers; this is the IIA superstring.

The massless (NS+, NS+) states for both of these string theories consist of

b̃I
−

1
2

|NS〉L ⊗ bJ
−

1
2

|NS〉R ⊗ |p〉.

As in the bosonic case, these correspond to gµν ,, Bµν , φ.

• Consider the closed, bosonic string on a circle, X25 ∼ X25+2πR. If we were dealing

with particles rather than strings, we know what would happen: the momentum in the

circle direction is quantized (by ψ ∼ eip·x being set equal to itself when going around the

circle) as

p25 =
n

R
, n = 0,±1,±2 . . . .

For a big circle, these are closely spaced together, and for a small circle they are widely

separated. That’s why it’s hard to experimentally rule out the absence of tiny, rolled up,

extra dimensions: it could just take more energy than we can make presently to excite one

of the n 6= 0 “Kaluza-Klein modes.”

Now we’re going to describe something bizarre about strings: there is a symmetry,

called T-dualtiy, which makes the physics invariant under R ↔ α′/R. This is strange: a

very big circle is physically indistinguishable from a very small circle! The reason is that,

in addition to momentum, there are string winding modes, and T-duality exchanges them.

For a big circle, the momentum modes are light and the winding modes are heavy, and

for a tiny circle they’re reversed, but same physics. Smallest possible effective distance,

R =
√
α′.

The winding number is given by X(τ, σ + 2π) − X(τ, σ) = m(2πR). We then have

X = XL +XR with

XL(τ + σ) = const.+ 1
2α

′(p+ w)(τ + σ) + oscillators,

XR(τ − σ) = const+ 1
2
α′(p− w)(τ − σ) + oscillators.

Here

p =
n

R
, w =

mR

α′
.

The T-duality symmetry comes from the symmetry (pL, pR) → (pL,−pR), where

pL =
n

R
+
mR

α′
, pR =

n

R
− mR

α′
.

Also, to have X(τ, σ+ 2π) ∼ X(τ, σ) + 2πRm, we need N⊥ − Ñ⊥ = nm.
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