6/5/09 Lecture outline
* Reading: Zwiebach chapter 14 and 17.

e Summarize from last two lectures. The relativistic open string spectrum is given by
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Where consistency requires D = 26.
The closed string is like a tensor product of two copies of the open string, corresponding

to the left movers and right movers. In particular, the closed string states are
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where there is a requirement that N+ = N- to have o translation invariance.

e Let’s count the states by defining f(z) = Trsmtesa:o‘/Mz. Find
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where we set D — 2 = 24. Similarly, for the closed string case, we have
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where we need to project out those states with different powers of x and z.
e Now consider the superstrings. The bosonic string has fields X!(r, ), which are

D — 2 worldsheet scalars. Now we introduce D — 2 worldsheet fermions
\I/R(T—(T)I, \Ifi(T-i-O').

Here R and L are for right and left moving, and I = 2... D — 2 (spacetime vector indices).
There are two choices of boundary conditions for left movers, and similarly two choices for

right movers:

Ul (1,0 +27) = £V (1,0), + : Ramond, — : Nevu-Schwarz.
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In the NS sector we have
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In the R sector we have
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The modes satisfy
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where {A, B} = AB + BA is the anti-commutator, reflecting the fermionic nature of the
modes.

The NS sector states are
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where the p, ; are either zero or one (Fermi statistics).
The R sector states are
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Here |R4) are the Ramond ground states, which are complicated thanks to the zero modes
db. We take half of them %(D —2) to be creation operators and the other half to annihilate
the vacuum. So then there are 2%(D -2 degenerate states. These form two equal groups,
depending on whether there are an even number of creation operators, or an odd number.
The former is called the R— sector and labeled by |R,), and the latter is called the R+
sector and labeled by |Rz). The = refer to worldsheet fermion number (—1)¥, where the
vacuum has fermion number (—1)F = —1.

e The mass-squared operator in the NS sector before normal ordering is
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where the —1/12 was seen in the bosonic case, and the —1/24 is the analog coming from
reordering the b,. As in the bosonic case, the commutator [M ~1, M ~7] = 0 determines the

spacetime dimension, here to be D = 10. So in the NS sector the mass squared operator is
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Similarly, in the R-sector, we have
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Re-ordering we have o/ M? = N+ + 2(D — 2)(—15 + 15), and the constants cancel, so
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In particular, the Ramond ground states are massless.

e The NS spectrum generating function is
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The R sector spectrum generating function is
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where 8 accounts for the ground state degeneracy associated with df, in either the R, or

the R_ sector. We should also GSO project the NS sector, i.e. throw away states with
(—1)¥ = —1 to get the NS+ states, with generating function
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This projects out the tachyon — nice! Moreover, the states in fr4+ are spacetime fermions,

whereas those in fyg 4+ are spacetime bosons, and their spectrum is degenerate, thanks to

the identity fr+(z) = fns+(x) (which was proven as a mathematical identity around 150

years before the superstring was even first thought of!).
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e For closed superstrings we can take the NS+ sector for both left and right movers,
and the R— sector for both left and right movers; this is the IIB superstring. Or we could
take the NS+ sector for both left and right movers, and the R— sector for left movers and
the R+ sector for right movers; this is the ITA superstring.

The massless (NS+, NS+) states for both of these string theories consist of
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As in the bosonic case, these correspond to g,.,, Buv, ¢.

e Consider the closed, bosonic string on a circle, Xo5 ~ X5+ 27 R. If we were dealing
with particles rather than strings, we know what would happen: the momentum in the
circle direction is quantized (by 1) ~ €P'® being set equal to itself when going around the

circle) as
n

E?
For a big circle, these are closely spaced together, and for a small circle they are widely

pas = n=0,41,42....

separated. That’s why it’s hard to experimentally rule out the absence of tiny, rolled up,
extra dimensions: it could just take more energy than we can make presently to excite one
of the n # 0 “Kaluza-Klein modes.”

Now we're going to describe something bizarre about strings: there is a symmetry,
called T-dualtiy, which makes the physics invariant under R <+ o'/R. This is strange: a
very big circle is physically indistinguishable from a very small circle! The reason is that,
in addition to momentum, there are string winding modes, and T-duality exchanges them.
For a big circle, the momentum modes are light and the winding modes are heavy, and
for a tiny circle they’re reversed, but same physics. Smallest possible effective distance,
R=d.

The winding number is given by X (7,0 4+ 27) — X(7,0) = m(2wrR). We then have
X =X + Xg with

X1 (T4 0) = const. + 30/ (p + w)(7 + o) + oscillators,

Xp(T —0) =const + 1a/(p — w)(r — o) + oscillators.

Here
n ~ mR
P=% YT
The T-duality symmetry comes from the symmetry (pr,pr) — (pr, —Pr), where
n  mR n  mR
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Also, to have X (7,0 + 2r) ~ X (7,0) 4+ 27 Rm, we need N* — N+ = nm.
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