
4/24/09 Lecture outline

? Reading: Zwiebach chapter 6, 7, 8.

• Particle q(τ) vs field φ(ξα) for α = 0, . . . dW − 1: particle is the case of a single ξ,

dW = 1, vs more than one for a field (e.g. ~E(t, ~x)). Fields have

S =

∫

Σ

ddW ξL(φ, ∂αφ),

the variation is

δS =

∫

Σ

ddW ξ

(

∂L
∂φ

− ∂α

∂L
∂∂αφ

)

δφ +

∫

∂Σ

∂L
∂∂αφ

δφ(ddW −1ξ)α,

where the last term is the boundary contribution, obtained by integrating a total derivative

using Gauss’ law. The Euler/Lagrange equations are thus

(

∂L
∂φa

− ∂α

∂L
∂∂αφa

)

= 0,

where we included an extra index a to be more general.

We also have to ensure that the boundary term vanishes, which is done by requiring

either ∂L
∂∂αφa nα|∂Σ = 0, where nα is perpendicular to the boundary, or by requiring that

φa is constant along the boundary, or by a combination of these.

While we’re at it, let’s recall/quote Noether’s theorem, relating continuous symmetries

of the action to conservation laws. If L is invariant under some continuous transformation

φa → φa + δφa, then there is a conserved quantity jα:

∂αjα = 0 with jα ∼ ∂L
∂∂αφa

δφa,

where the conservation law follows from δL = 0 and the Euler-Lagrange equations. We’ll

see that spacetime conservation laws, like spacetime momentum and angular momentum

conservation, will arise from such conserved currents on the string worldsheet.

• Recall S = −mc
∫

ds + q
c

∫

Aµdxµ for a relativistic point particle, where the first

term is the mass times the proper length of the world-line. For a string world-sheet, we

need two parameters, ξa, a = 1, 2. The string trajectory is x : Σ → M , where Σ is the 2d

world-sheet, with local coordinates ξa, and M is the target space, with local coordinates

xµ. The worldsheet area element is A =
∫

d2ξ
√

|h|, where hab is the worldsheet metric,
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and |h| is its determinant. Suppose that the target space has metric gµν , with space-time

length e.g. ds2 = gµνdxµdxν . By writing dxµ = ∂axµdξa, we get

ds2 = gµν

dxµ

dξa

dxν

dξb
dξadξb, so hab = gµν

dxµ

dξa

dxν

dξb
,

where this hab is called the induced metric. So the worldsheet area functional is

A =

∫

d2ξ

√

det(gµν

dxµ

dξa

dxν

dξb
).

• For strings in Minkowski spacetime, we write it instead as Xµ(τ, σ). There is also a

needed minus sign, as the area element is
√

|g|, actually involves the absolute value of the

determinant, and the determinant is negative (just like det η = −1). So

A =

∫

dτdσ

√

(
∂X

∂τ
· ∂X

∂σ
)2 − (

∂X

∂τ
)2(

∂X

∂σ
)2,

where the spacetime indices are contracted with the metric gµν . To get an action with

[S] = ML2/T , we have

SNambu−Goto = −T0

c

∫ τf

τi

dτ

∫

dσ

√

(Ẋ · X ′)2 − (Ẋ)2(X ′)2,

where we define Ẋµ ≡ dxµ

dτ
and Xµ′ ≡ ∂Xµ

∂σ
annd T0 is the string tension, with [T0] =

[F ] = [ML/T 2].

The action is reparameterization invariant: can take (τ, σ) → (τ ′(τ, σ, σ′(τσ) and get

S → S. Enormous symmetry/redundancy in choice of (τ, σ); can “fix the gauge” to some

convenient choice, and the physics is completely independent of the choice.

• We can write SNG in terms of the Lagrangian density

LNG = −T0

c

√

(Ẋ · X ′)2 − (Ẋ)2(X ′)2,

and we have

Pτ
µ =

∂L
∂Ẋµ

= −T0

c

(Ẋ · X ′)X ′
µ − (X ′)2Ẋµ

√

(Ẋ · X ′)2 − (Ẋ)2(X ′)2
,

and

Pσ
µ =

∂L
∂Xµ′

= −T0

c

(Ẋ · X ′)Ẋµ − (Ẋ)2X ′
µ

√

(Ẋ · X ′)2 − (Ẋ)2(X ′)2
.
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The condition δS = 0 gives the Euler-Lagrange equations

∂Pτ
µ

∂τ
+

∂Pσ
µ

∂σ
= 0.

For the open string, δS = 0 also requires
∫

dτ [δXµP σ
µ ]σ0

0 = 0, which requires for each µ

index either of the Dirichlet or Neumann BCs, at each end:

Dirichlet
∂Xµ

∂τ
(τ, σ∗) = 0 → δXµ(τ, σ∗) = 0,

Neumann Pσ
µ (τ, σ∗) = 0.

• Static gauge: pick τ = t. Verify sign inside
√· in this case.

• In static gauge, there is no KE, so L = −V , and verify that string stretched length

a has V = T0a. So µ0 = T0/c2.

• In static gauge, express S in terms of ~v⊥ = ∂t
~X − (∂t

~S · ∂s
~X)∂s

~X (with ds ≡
|d ~X|t=const = |∂σ

~X||dσ|) to get L = −T0

∫

ds
√

1 − v2
⊥

/c2. Also get

Pσµ = −T0

c2

(∂s
~X · ∂t

~X)Ẋµ + (c2 − (∂t
~X)2)∂sX

µ

√

1 − v2
⊥

/c2
,

Pτµ =
T0

c2

ds

dσ

Ẋµ − (∂s
~X · ∂t

~X)∂sX
µ

√

1 − v2
⊥

/c2
.

• Show that endpoints move transversely, ∂s
~X · ∂t

~X = 0, and at the speed of light,

v = c, for the free (Neuman) BCs, using fact that Pσµ = 0.

• Choose σ parameterization such that

∂σ
~X · ∂τ

~X = 0 and dσ =
ds

√

1 − v2
⊥

/c2
=

dE

T0
.

The last equation is equivalent to (∂σ
~X)2 + c−2(∂t

~X)2 = 1. With this worldsheet gauge

choice,

Pτµ =
T0

c2
∂tX

µ =
T 0

c2
(c, ~v⊥), Pσ,µ = −T0∂σXµ = (0,−T0∂σ

~X).

The equation of motion is then simply (∂2
t − c2∂2

σ) ~X = 0.

• ja
µ = Pa

µ (where a = σ, τ) is the conserved Noether current for spacetime translation

invariance, δXµ = εµ. The string equations of motion are equivalent to the worldsheet

conservation of this current: ∂aja
µ = 0. The spacetime momentum of the string is the
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corresponding conserved charge: pµ =
∫

dσPτ
σ . (More generally, it is

∫

(Pτ
µdσ − Pσ

µdτ).)

This is conserved for the closed string or open Neumann BCs. Not conserved for Dirichlet

BCs.

The Lorentz symmetry comes from the worldsheet symmetry δXµ = εµνXν , which is

a symmetry if εµν = ε[µν]. The assocaited conserved currents are Mα
µν = XµPα

ν −(µ ↔ ν).

The corresponding charges Mµν =
∫

(Mτ
µνdσ − Mσ

µνdτ) are the angular momenta (and

M0i is related to the center of mass position at t = 0).

• T0 ≡ 1/2πα′h̄c. Consider string in 12 plane. Find that the rotational angular

momentum has J = α′h̄E2, which is the Regge trajectory observation of the early ’70s.

`s = h̄c
√

α′.

• Aside, for later: the string worldsheet analog of Sparticle ⊃
∫

qAµdxµ is Sstring ⊃
−

∫

Σ
Bµν∂τXµ∂σXνdσdτ .

4


