4/24/09 Lecture outline

 \star Reading: Zwiebach chapter 6, 7, 8.

• Particle $q(\tau)$ vs field $\phi(\xi^{\alpha})$ for $\alpha = 0, \dots, d_W - 1$: particle is the case of a single ξ , $d_W = 1$, vs more than one for a field (e.g. $\vec{E}(t, \vec{x})$). Fields have

$$S = \int_{\Sigma} d^{d_W} \xi \mathcal{L}(\phi, \partial_\alpha \phi),$$

the variation is

$$\delta S = \int_{\Sigma} d^{d_W} \xi \left(\frac{\partial \mathcal{L}}{\partial \phi} - \partial_\alpha \frac{\partial \mathcal{L}}{\partial \partial_\alpha \phi} \right) \delta \phi + \int_{\partial \Sigma} \frac{\partial \mathcal{L}}{\partial \partial_\alpha \phi} \delta \phi (d^{d_W - 1} \xi)^\alpha,$$

where the last term is the boundary contribution, obtained by integrating a total derivative using Gauss' law. The Euler/Lagrange equations are thus

$$\left(\frac{\partial \mathcal{L}}{\partial \phi^a} - \partial_\alpha \frac{\partial \mathcal{L}}{\partial \partial_\alpha \phi^a}\right) = 0,$$

where we included an extra index a to be more general.

We also have to ensure that the boundary term vanishes, which is done by requiring either $\frac{\partial \mathcal{L}}{\partial \partial_{\alpha} \phi^{a}} n^{\alpha}|_{\partial \Sigma} = 0$, where n^{α} is perpendicular to the boundary, or by requiring that ϕ^{a} is constant along the boundary, or by a combination of these.

While we're at it, let's recall/quote Noether's theorem, relating continuous symmetries of the action to conservation laws. If \mathcal{L} is invariant under some continuous transformation $\phi^a \to \phi^a + \delta \phi^a$, then there is a conserved quantity j^{α} :

$$\partial_{\alpha} j^{\alpha} = 0$$
 with $j^{\alpha} \sim \frac{\partial \mathcal{L}}{\partial \partial_{\alpha} \phi^a} \delta \phi^a$

where the conservation law follows from $\delta \mathcal{L} = 0$ and the Euler-Lagrange equations. We'll see that spacetime conservation laws, like spacetime momentum and angular momentum conservation, will arise from such conserved currents on the string worldsheet.

• Recall $S = -mc \int ds + \frac{q}{c} \int A_{\mu} dx^{\mu}$ for a relativistic point particle, where the first term is the mass times the proper length of the world-line. For a string world-sheet, we need two parameters, ξ^a , a = 1, 2. The string trajectory is $x : \Sigma \to M$, where Σ is the 2d world-sheet, with local coordinates ξ^a , and M is the target space, with local coordinates x^{μ} . The worldsheet area element is $A = \int d^2 \xi \sqrt{|h|}$, where h_{ab} is the worldsheet metric, and |h| is its determinant. Suppose that the target space has metric $g_{\mu\nu}$, with space-time length e.g. $ds^2 = g_{\mu\nu}dx^{\mu}dx^{\nu}$. By writing $dx^{\mu} = \partial_a x^{\mu}d\xi^a$, we get

$$ds^{2} = g_{\mu\nu} \frac{dx^{\mu}}{d\xi^{a}} \frac{dx^{\nu}}{d\xi^{b}} d\xi^{a} d\xi^{b}, \qquad \text{so} \qquad h_{ab} = g_{\mu\nu} \frac{dx^{\mu}}{d\xi^{a}} \frac{dx^{\nu}}{d\xi^{b}},$$

where this h_{ab} is called the induced metric. So the worldsheet area functional is

$$A = \int d^2 \xi \sqrt{\det(g_{\mu\nu} \frac{dx^{\mu}}{d\xi^a} \frac{dx^{\nu}}{d\xi^b})}.$$

• For strings in Minkowski spacetime, we write it instead as $X^{\mu}(\tau, \sigma)$. There is also a needed minus sign, as the area element is $\sqrt{|g|}$, actually involves the absolute value of the determinant, and the determinant is negative (just like det $\eta = -1$). So

$$A = \int d\tau d\sigma \sqrt{\left(\frac{\partial X}{\partial \tau} \cdot \frac{\partial X}{\partial \sigma}\right)^2 - \left(\frac{\partial X}{\partial \tau}\right)^2 \left(\frac{\partial X}{\partial \sigma}\right)^2},$$

where the spacetime indices are contracted with the metric $g_{\mu\nu}$. To get an action with $[S] = ML^2/T$, we have

$$S_{Nambu-Goto} = -\frac{T_0}{c} \int_{\tau_i}^{\tau_f} d\tau \int d\sigma \sqrt{(\dot{X} \cdot X')^2 - (\dot{X})^2 (X')^2},$$

where we define $\dot{X}^{\mu} \equiv \frac{dx^{\mu}}{d\tau}$ and $X\mu' \equiv \frac{\partial X^{\mu}}{\partial \sigma}$ and T_0 is the string tension, with $[T_0] = [F] = [ML/T^2]$.

The action is reparameterization invariant: can take $(\tau, \sigma) \rightarrow (\tau'(\tau, \sigma, \sigma'(\tau\sigma))$ and get $S \rightarrow S$. Enormous symmetry/redundancy in choice of (τ, σ) ; can "fix the gauge" to some convenient choice, and the physics is completely independent of the choice.

• We can write S_{NG} in terms of the Lagrangian density

$$\mathcal{L}_{NG} = -\frac{T_0}{c} \sqrt{(\dot{X} \cdot X')^2 - (\dot{X})^2 (X')^2},$$

and we have

$$\mathcal{P}^{\tau}_{\mu} = \frac{\partial \mathcal{L}}{\partial \dot{X}^{\mu}} = -\frac{T_0}{c} \frac{(\dot{X} \cdot X') X'_{\mu} - (X')^2 \dot{X}_{\mu}}{\sqrt{(\dot{X} \cdot X')^2 - (\dot{X})^2 (X')^2}},$$

and

$$\mathcal{P}^{\sigma}_{\mu} = \frac{\partial \mathcal{L}}{\partial X^{\mu\prime}} = -\frac{T_0}{c} \frac{(\dot{X} \cdot X') \dot{X}_{\mu} - (\dot{X})^2 X'_{\mu}}{\sqrt{(\dot{X} \cdot X')^2 - (\dot{X})^2 (X')^2}}.$$

The condition $\delta S = 0$ gives the Euler-Lagrange equations

$$\frac{\partial \mathcal{P}^{\tau}_{\mu}}{\partial \tau} + \frac{\partial \mathcal{P}^{\sigma}_{\mu}}{\partial \sigma} = 0$$

For the open string, $\delta S = 0$ also requires $\int d\tau [\delta X^{\mu} P^{\sigma}_{\mu}]_0^{\sigma_0} = 0$, which requires for each μ index either of the Dirichlet or Neumann BCs, at each end:

Dirichlet $\frac{\partial X^{\mu}}{\partial \tau}(\tau, \sigma_*) = 0 \longrightarrow \delta X^{\mu}(\tau, \sigma_*) = 0,$ Neumann $\mathcal{P}^{\sigma}_{\mu}(\tau, \sigma_*) = 0.$

• Static gauge: pick $\tau = t$. Verify sign inside $\sqrt{\cdot}$ in this case.

• In static gauge, there is no KE, so L = -V, and verify that string stretched length a has $V = T_0 a$. So $\mu_0 = T_0/c^2$.

• In static gauge, express S in terms of $\vec{v}_{\perp} = \partial_t \vec{X} - (\partial_t \vec{S} \cdot \partial_s \vec{X}) \partial_s \vec{X}$ (with $ds \equiv |d\vec{X}|_{t=const} = |\partial_\sigma \vec{X}| |d\sigma|$) to get $L = -T_0 \int ds \sqrt{1 - v_{\perp}^2/c^2}$. Also get

$$\mathcal{P}^{\sigma\mu} = -\frac{T_0}{c^2} \frac{(\partial_s \vec{X} \cdot \partial_t \vec{X}) \dot{X}^{\mu} + (c^2 - (\partial_t \vec{X})^2) \partial_s X^{\mu}}{\sqrt{1 - v_{\perp}^2/c^2}},$$
$$\mathcal{P}^{\tau\mu} = \frac{T_0}{c^2} \frac{ds}{d\sigma} \frac{\dot{X}^{\mu} - (\partial_s \vec{X} \cdot \partial_t \vec{X}) \partial_s X^{\mu}}{\sqrt{1 - v_{\perp}^2/c^2}}.$$

• Show that endpoints move transversely, $\partial_s \vec{X} \cdot \partial_t \vec{X} = 0$, and at the speed of light, v = c, for the free (Neuman) BCs, using fact that $\mathcal{P}^{\sigma\mu} = 0$.

• Choose σ parameterization such that

$$\partial_{\sigma} \vec{X} \cdot \partial_{\tau} \vec{X} = 0$$
 and $d\sigma = \frac{ds}{\sqrt{1 - v_{\perp}^2/c^2}} = \frac{dE}{T_0}$

The last equation is equivalent to $(\partial_{\sigma} \vec{X})^2 + c^{-2} (\partial_t \vec{X})^2 = 1$. With this worldsheet gauge choice,

$$\mathcal{P}^{\tau\mu} = \frac{T_0}{c^2} \partial_t X^{\mu} = \frac{T^0}{c^2} (c, \vec{v}_\perp), \qquad \mathcal{P}^{\sigma,\mu} = -T_0 \partial_\sigma X^{\mu} = (0, -T_0 \partial_\sigma \vec{X}).$$

The equation of motion is then simply $(\partial_t^2 - c^2 \partial_\sigma^2) \vec{X} = 0.$

• $j^a_{\mu} = \mathcal{P}^a_{\mu}$ (where $a = \sigma, \tau$) is the conserved Noether current for spacetime translation invariance, $\delta X^{\mu} = \epsilon^{\mu}$. The string equations of motion are equivalent to the worldsheet conservation of this current: $\partial_a j^a_{\mu} = 0$. The spacetime momentum of the string is the corresponding conserved charge: $p^{\mu} = \int d\sigma \mathcal{P}^{\tau}_{\sigma}$. (More generally, it is $\int (\mathcal{P}^{\tau}_{\mu} d\sigma - \mathcal{P}^{\sigma}_{\mu} d\tau)$.) This is conserved for the closed string or open Neumann BCs. Not conserved for Dirichlet BCs.

The Lorentz symmetry comes from the worldsheet symmetry $\delta X^{\mu} = \epsilon^{\mu\nu} X_{\nu}$, which is a symmetry if $\epsilon^{\mu\nu} = \epsilon^{[\mu\nu]}$. The assocaited conserved currents are $\mathcal{M}^{\alpha}_{\mu\nu} = X_{\mu}\mathcal{P}^{\alpha}_{\nu} - (\mu \leftrightarrow \nu)$. The corresponding charges $M_{\mu\nu} = \int (\mathcal{M}^{\tau}_{\mu\nu} d\sigma - \mathcal{M}^{\sigma}_{\mu\nu} d\tau)$ are the angular momenta (and M^{0i} is related to the center of mass position at t = 0).

• $T_0 \equiv 1/2\pi \alpha' \hbar c$. Consider string in 12 plane. Find that the rotational angular momentum has $J = \alpha' \hbar E^2$, which is the Regge trajectory observation of the early '70s. $\ell_s = \hbar c \sqrt{\alpha'}$.

• Aside, for later: the string worldsheet analog of $S_{particle} \supset \int q A_{\mu} dx^{\mu}$ is $S_{string} \supset -\int_{\Sigma} B_{\mu\nu} \partial_{\tau} X^{\mu} \partial_{\sigma} X^{\nu} d\sigma d\tau$.