
4/17/09 Lecture outline

? Reading: Zwiebach chapter 4 and 5.

• Recall that [S] = ML2/T , same as [h̄]. (Indeed, Feynman’s formulation of QM is

based on ψ ∼
∫

all paths x(t)[dx(t)]e
iS[x(t)]/h̄.)

As mentioned last time, the action for a relativistic point particle of mass m is S =

−mc
∫

ds = −mc2
∫

dt
√

1 − v2/c2. This gives ~p = ∂~v = γm~v and H = ~p · ~v − L = γmc2,

both of which are constants of the motion (thanks to the time and spatial translation

invariance).

• Reparametrization invariance: write xµ(τ), and can change worldline parameter τ

to an arbitrary new parameterization τ ′(τ), and the action is invariant. To see this use

S = −mc
∫

√

−ηµν
dxµ

dτ
dxν

dτ
and change dxµ

dτ
= dxµ

dτ ′

dτ ′

dτ
and note that S → S. The Euler

Lagrange equations of motion are
dpµ

dτ
= 0.

When the particle is charged and in the presence of electric and magnetic fields, there

is the new term in the action S = −mc
∫

ds+ q
c

∫

Aµdx
µ, which is also reparameterization

invariant. The equations of motion can now be written as d2xµ

dτ2 = q
mcFµν

dxν

dτ .

• A key concept from last lecture is that E&M is associated with the local gauge

transformation

ψ(t, ~x) → eiqf(t,~x)/h̄cψ(t, ~x), Aµ → Aµ + ∂µf(t, ~x). (1)

According to Noether’s theorem, there is a one-to-one correspondence

(continuous) global symmetry ↔ conserved quantity.

The original example the relation between translation symmetry in time and/or space,

xµ → xµ + aµ, and conservation of energy and/or momentum, pµ.

There is another deep correspondence

local gauge symmetry → forces.

and E&M is the force associated with the local symmetry above. There is still a conserved

charge, in E&M it is current conservation ∂µjµ = 0. As we’ll now discuss, in general

relativity (GR) the above spacetime translation symmetry is a subgroup of a more general

symmetry, general coordinate invariance, which is the fundamental symmetry principle

associated with gravity.
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• A brief (!) introduction to general relativity. We replace the metric ηµν with

a dynamical quantity gµν . There is a symmetry principle which is akin to the gauge

invariance of electricity and magnetism and to the above reprarameterization invariance.

It is general coordinate invariance: xµ → xµ′

(xµ). Physics is invariant under such local

coordinate changes. The metric transforms as gµν = gµ′ν′
dxµ

′

dxµ

dxν
′

dxν . The action of a point

particle is S = −mc
∫

ds + q
c

∫

Aµdx
µ, just like before, except that we contract and raise

and lower indices with gµν rather than ηµν . Get from the Euler Lagrange equations now

d2xµ

dτ2
+ Γµ

ρσ

dxρ

dτ

dxσ

dτ
=

q

mc
Fµ

ν

dxν

dτ
,

where

Γµ
ρσ = 1

2g
µλ(∂ρgλσ + ∂σgλρ − ∂λgρσ)

is the connection; it is analogous to Aµ in electromagnetism. The connection enters into

covariant derivatives like ∇ρV
µ = ∂ρV

µ + Γµ
ρσV

σ in order to have things transform prop-

erly under general coordinate transformations (analogous to the gauge invariant covariant

derivatives Dµ = ∂µ − i q
h̄cAµ. in E&M). The above equations of motion is called the

geodesic equation; it reparameterization invariant (τ → τ ′) and transforms properly under

general coordinate transformations xµ → xµ′

.

The Riemann tensor is

Rρ
σµν = ∂µΓρ

νσ + Γρ
µλΓλ

νσ − (µ↔ ν).

It is analogous to Fµν in E&M. The Ricci tensor is Rµν = Rλ
µλν and the Ricci scalar is

R = Rµ
µ. The metric is dynamically determined by minimizing the action w.r.t. δgµν ,

where there is a term

S =
1

16πGD

∫

dDx
√

|g|R+ . . . .

For fun, we wrote it in general spacetime dimension D. Let’s note the units (setting c=1):

[R] = L−2 and [S] = ML, so [GD] = LD−3M−1. Since [h̄] = ML, we have GD = `D−2
P

in D spacetime dimensions. (Note that
∫

dDx
√

|g| gives the spacetime volume (which is

clearly general coordinate invariant). This comment will be useful very soon, when we

write down the relativistic string action!)

Note also that the relation GD = GVC is evident from the above action.

In the weak curvature limit, we can reduce to the gravitational potentials, with

∇2V
(D)
g = 4πGDρm. This comes from gµν ≈ ηµν + hµν and h0,0 ≈ −2Vg.
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• Nonrelativistic strings. [T0] = [F ] = [E]/L = [µ0][v
2]. Indeed, considering F = ma

for an element dx of the string yields the string wave equation ∂2y
∂x2 − 1

v2

0

∂2y
∂t2 = 0, with

v0 =
√

T0/µ0. Endpoints at x = 0 and x = a. Can choose Dirichlet or Neumann BCs at

these points. With Dirichlet at each end, yn(x) = An sin(nπx/a) and the general solution

is y(x, t) =
∑

n yn(x) cosωnt, where ωn = v0nπ/a (and the An are determined from the

initial conditions, by Fourier transform).

The nonrelativistic string action is S =
∫

dtL where L is the kinetic energy minus

potential energy, which gives

S =

∫

dt

∫

dx

(

1
2µ0(

∂y

∂t
)2 − 1

2T0(
∂y

∂x
)2

)

,

which is a particular case of the more general action S =
∫

dtdxL(∂y
∂t ,

∂y
∂x ). We can then

define the momentum density and corresponding quantity

Pt =
∂L

∂ẏ
, Px =

∂L

∂y′
,

and the action is made stationary, δS = 0, if

∂Pt

∂t
+
∂Px

∂x
= 0,

which when applied to the above particular choice of action gives the usual wave equation.

Note that Neumann or Dirichlet BCs correspond to Px = 0 or Pt = 0 at the boundary,

respectively, and that this is indeed needed for the surface terms to be compatible with

δS = 0.
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