
4/24/08 Lecture 8 outline

• Last time: Suppose A is Hermitian, A† = A. Then 〈ai|A|ai〉
∗ = a∗i 〈ai|ai〉 =

〈ai|A
†|ai〉 = ai〈ai|ai〉, from which it follows that ai = a∗i ; the eigenvalues of Hermitian

operators are real.

Also, using A−A† = 0, get 0 = 〈ai(A−A†)|aj〉 = (aj − ai)〈ai|aj〉, so ai 6= aj implies

that 〈ai|aj〉 = 0; eigenvectors with different eigenvectors are orthogonal.

We can use the eigenvectors of a Hermitian operator to form a (complete) basis, with

〈ai|aj〉 = δij and
∑

i |ai〉〈ai| = 1 (if there are many eigenvectors with the same eigenvalue,

all have to be included in these sums). In this basis, A =
∑

i ai|ai〉〈ai| corresponds to

a diagonal matrix. This is the statement that A can be diagonalized by a similarity

transformation, given by the matrix of eigenvectors.

• Work through example of A =

(

0 i

−i 0

)

. Find eigenvalues a = ±1 and eigenstates

|a = ±1〉. Verify explicitly the above relations.

• If [A,B] = 0, then A and B can be simultaneously diagonalized. If [A,B] 6= 0, then

they can not. Soon: will show that [A,B] 6= 0 corresponds to uncertainty, ∆A∆B 6= 0.

For example, [x̂, p̂] = ih̄ will lead to the Heisenberg Uncertainty Principle, ∆x∆p ≥ 1

2
h̄.

• Define expectation values in state |ψ〉 by 〈A〉 ≡ 〈ψ|A|ψ〉. If A is Hermitian, then

〈A〉 is real. Note also that 〈A〉 =
∑

i ai|〈ai|ψ〉|
2.

• Next time: interpret the above as saying that ai are the possible measured values of

observable A, and |〈ai|ψ〉|
2 are the probabilities of measuring the outcome ai in the state

|ψ〉.
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