
4/8/08 Lecture 3 outline

• Planck’s fix: assume radiation of frequency ω can only be absorbed or emitted in

quantized amounts, given by E = nh̄ω for integer n. Gives energy density of the glowing

light in the cavity:

u(ω, T ) =

(

h̄ω

eh̄ω/kN T − 1

) (

ω2

π2c3

)

.

(Planck originally wrote this in terms of ν = ω/2π and h = 2πh̄). For low frequencies,

h̄ω � kBT , the first factor → kBT , and so u → ucl in this limit. For high frequencies, the

first factor goes to zero as e−h̄ω/kBT , avoiding the UV catastrophe.

Knowing the energy density inside the cavity also gives the energy flux through the

surface (e.g. if there were a hole). The emitted power per unit area per frequency is related

to the above energy density by

e(ω, T ) =
1

4
cu(ω, T ) =

1

4
c

(

h̄ω

eh̄ω/kN T − 1

) (

ω2

π2c3

)

.

This is the famous blackbody spectrum of radiated power. It appears everywhere in

Nature, e.g. the radiated power of a star (or the entire universe) is given by this formula.

Fits beautifully all the experimentally observed data, for h = 2πh̄ = 6.6261 × 10−34J · s.

(Explain the 1/4: light has velocity c, but only component perpendicular to an area

element counts. Let the normal to the area element be ẑ and use spherical coordinates,

with light direction given by θ, φ and our desired flux is then e = cu〈cos θ〉. Here we

average 〈cos θ〉 =
∫

hemi
cos θdΩ/

∫

hemi
dΩ, where dΩ = sin θdθdφ and hemi is because only

θ between 0 and π/2 leads to a flux out of the area element (for θ between π/2 and π, the

flux is inward); this gives 〈cosθ〉 = 1/4.)

The above expression is power radiated per area per frequency range. Integrating it

over all frequency, get the Stephan-Boltzmann result for the total power per unit area:

etotal(T ) =
∫

∞

0
e(ω, T )dν = σT 4, with σ = 2π5k4

B/15c2h3. These relations are very useful

in astrophysics and cosmology.

[Aside on the derivation: the thermal average energy of a system with energy levels εn

is E =
∑

n εnP (εn), where P (εn) = e−εn/kT /
∑

m e−εm/kT is the probability of the state

having energy εn. Using εn = nh̄ω, this gives E = − ∂
∂β ln(

∑

∞

n=0
xn) where β ≡ 1/kT and

x ≡ e−βh̄ω. So E = ∂
∂β ln(1 − e−βh̄ω) = h̄ω/(eh̄ω/kT − 1).]

The quantization of energy is more noticeable for larger frequencies. A natural unit

of energy for atoms is the eV , 1eV = 1.602 × 10−19J . In these units, h ≈ 4.13567 ×
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10−15eV/Hz. As an example, optical frequencies are order few times 1014Hz, and the

quanta of energy are of order 2eV . (Visible light has λ ∼ 4 − 7 × 10−7m.)

In 1905, Einstein suggests that light is made up of particles, “photons” of energy

E = h̄ω and momentum ~p = h̄~k (note that ω = c|~k| then gives E = c|~p|, which is the

m = 0 case of E =
√

(c~p)2 + (mc2)2; so the photon is a massless particle). These quanta

also fits with a number of other experiments of the early 1900s, whose results could not be

explained by the classical description of light as a wave.

• Photoelectric effect. Shine light on metal. Electrons kicked out. Measure maximum

K.E. Kmax via stopping voltage, eVs = Kmax. Find Kmax doesn’t depend on the brightness

of the light, and there is no time lag. The intensity of the light only affects the number

of ejected electrons. Not what classical physics would give. Instead, find Kmax depends

linearly on frequency ω. Suggests light as quanta of energy, photons, of energy E = hν =

h̄ω. The ejected electron has kinetic energy Kmax = h̄ω − W , where W is the work

function, depends on the metal. Plot Kmax vs ω, slope gives h̄, agrees with Plank’s. It

works. In practice, W ∼ O(1)eV , with 1eV = 1.602 × 10−19J .

• Compton effect (1924). Shine X-rays through a thin metal foil, and measure intensity

of scattered light as a function of λ and the scattering angle θ. Classical wave prediction:

scattered intensity has Iwave(λ, θ) = I0 cos2 θ, with the same frequency as the incoming

light. But instead the experiment fits with the picture that photons scatter off electrons

just like scattering (relativistic) particles. Photons carry momenta ~p = h̄~k. Fits with

E = h̄ω: then E = pc, since light travels with speed c, it must be massless. Scatter

photons off electrons. Energy momentum conservation, p1 + p2 = p3 + p4. These are

4-vectors. We can write pµ = (E/c, ~p) and recall that p2 = (E/c)2 − ~p2 = (mc)2 in any

frame of reference. Take p1 = (p, p, 0, 0), p2 = (mec, 0, 0, 0), p3 = (p′, p′ cos θ, p′ sin θ, 0),

and p4 is the final momentum of the electron. Write p1 + p2 − p3 = p4 and square to get

finally

λ′ − λ = λc(1 − cos θ) λc =
h

mec
= 2.426 × 10−12m.

Change in wavelength is independent of intensity and time of exposure, depends only on

scattering angle.

• Finish reviewing history. Balmer formula for hydrogen spectral lines, λ−1 = R(n−2

f −

n−2

i ), R ≈ 1.01× 10−7m−1. Rutherford scattering suggests hydrogen structure: proton in

center, with orbiting electron. Classically would radiate and spiral in, would get radiation

of frequency given by e2/4πε0r
2 = meω

2

er, so ω2

e = (e2/4πε0me)r
−3 would get bigger
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as electron spirals in. Bohr (1913): ωγ 6= ωe. Instead quantized energy levels, and Eγ =

Ei−Ef . Get Balmer formula if En = −2πh̄cR/n2. Bohr argues for this by postulating that

L = mevr = meωr2 is quantized, L = nh̄. Then E = 1

2
mv2 − e2/4πε0r = −e2/8πε0r =

−1

2
me(e

2/4πε0)
2L−2 agrees with Balmer. Also can write L2 = mee

2r/4πε0 to get an

expression for the size of the atom, rn = n2a0, where a0 is the groundstate radius, a0 =

h̄c/mec
2α, where α ≡ e2/4πε0h̄c ≈ 1/137, gives a0 ≈ 0.529 × 10−10m in agreement with

observation.

Generalization to Bohr-Sommerfeld quantization:
∮

pdx = nh.

Correspondence principle: limn→∞ of quantum results should agree with classical

physics. Classical result is found from e2/4πε0r
2 = meω

2

er and L = meωr2 so L3 =

m3

eω
−1

e (e2/4πε0me)
2. Writing L = nh̄, this gives ωe = mec

2α2/h̄n3. On the other hand,

Ei → Ef transition gives a photon of frequency ωγ = (Ei−Ef )/h̄ = −(2h̄)−1mec
2α2(n−2

i −

n−2

f ). Take ni = n and nf = n − 1, get ωγ = mec
2α2(2n − 1)/2h̄n2(n − 1)2, which agrees

with ωe for n → ∞.
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