
6/5/08 Lecture 19 outline

• Last time : Consider spherically symmetric H = 1
2m
~p2 + V (r). Since [H,Li] = 0,

we can find simultaneous eigenstates |E, `,m〉 of H, L2, and Lz. Indeed, note that

H =
p2

r

2µ
+

L2

2µr2
+ V (r)

where in position space the first terms correspond to

~p2 → −h̄2 ∇2 = −h̄2

(

∂2

∂r2
+

2

r

∂

∂r
−

L2

h̄2r2

)

≡ p2
r +

L2

r2
.

It is common, also in classical mechanics, to note that this looks like a 1d problem now,

with Veff (r) = V (r)+(L2/2µr2). Here µ is the mass, not to be mistaken for the m integer

appearing in |`,m〉. The energy eigenvalue equation then becomes

(

p2
r

2µ
+
h̄2`(`+ 1)

2µr2
+ V (r)

)

|E, `,m〉 = E|E, `,m〉.

In position space, write this equation and discuss solution by separation of variables. We

then have ψE,`,m(r, θ, φ) = 〈r, θ, φ|E, `,m〉 = Rn,`(r)Y`,m(θ, φ), where

(

−
h̄2

2µ
(
∂2

∂r2
+

2

r

∂

∂r
) +

h̄2`(`+ 1)

2µr2
+ V (r)

)

Rn,`(r) = En,`Rn,`(r),

where n labels the solutions of this equation. The energy is quantized, via n, because

we’re considering bound states of the potential. Note that the energy eigenvalues En,`

don’t depend on the Lz eigenvalue m; this is as expected from the spherical symmetry,

which implies that [H,L±] = 0. The derivative terms become a little simpler if we define

Rn,`(r) = Un,`(r)/r:

(

−
h̄2

2µ

d2

dr2
+ V (r) +

`(`+ 1)h̄2

2µr2

)

Un,`(r) = En,`Un,`(r).

• Consider the limit r → 0. If ` 6= 0, and if V (r) is less singular than r−2 as

r → 0, then the terms V (r) and the term E become negligible as r → 0, and we have

U ′′
` (r) ≈ `(`+ 1)r−2U`(r), i.e. for r → 0, we have R`(r) = U`(r)/r → A`r

` +B`r
−(`+1), as

is familiar from solving the Laplace eqn. in spherical coordinates. We need to set B` = 0

to have a regular solution at r = 0. Now consider r → ∞ and suppose that V → 0 in this

limit. Then the E < 0 bound state wavefunctions behave for r → ∞ as U(r) ∼ e−κr in

this limit, with κ =
√

2µ|E|/h̄2.
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• Consider V (r) = −Ze2/4πε0r. Define ρ ≡
√

8µ|E|/h̄2r and λ ≡ Ze2

4πε0h̄

√

µ
2|E|

=

Zα
√

µc2

2|E| . To account for above asymptotic behaviors, define R(r) = e−ρ/2ρ`H(ρ). The

equation for H(ρ) is then

H ′′(ρ) + (
2`+ 2

ρ
− 1)H ′(ρ) +

λ− `− 1

ρ
H = 0.

Take H(ρ) =
∑

k akρ
k and plug into above eqn to get

∑

k

ρk−1 ((k + 1)(k + 2`+ 2)ak + (λ− `− 1 − k)ak) = 0.

Set each term to zero, so get recursion relation:

ak+1

ak
=

k + `+ 1 − λ

(k + 2`+ 2)(k + 1)
,

For large k this would imply ak+1/ak → 1/k for k → ∞, which would imply the wrong

behavior for large r (corresponding to R(r) ∼ e+ρ/2) unless the series terminates.

H(ρ) must be a polynomial of finite degree, i.e. the recursion relation must truncate

at some kmax, so that akmax+1 = 0. Define n ≡ kmax + ` + 1. Then λ = n. This gives E

in terms of n.

• Summary: En = −1
2
µ(Ze2/4πε0h̄)2 ·n−2 = −1

2
µc2(Zα)2/n2, where n ≥ `+1. Then

ρ = 2µZe2r/4πε0h̄
2n ≡ 2Zr/na0 where a0 = h̄24πε0/µe

2 = h̄/µcα is the Bohr radius,

numerically a0 ≈ 0.5Å. So Rn,`(r) = (Zr/na0)
`e−Zr/na0Hn,`(Zr/na0), where Hn,`(ρ) is

a degree kmax = n − ` − 1 polynomial (related to what’s called the associated Laguerre

polynomial, Hn,`(ρ) ∼ L2`+1
n−`−1(ρ)).

• Count the degeneracy of solutions with E = En: since kmax is a non-negative

integer, the value of ` can go from zero to n − 1. For each ` value, there is a 2` + 1 fold

degeneracy of Lz = mh̄ quantum numbers. (The ` degeneracy is related to Lenz vector

~A = (~L× ~p− ~p× ~L)/2µα+ ~r/r). So the total degeneracy here is

n−1
∑

`=0

(2`+ 1) = n2.

• The radial probability distribution is |ψn,`,m|2 ∼ r2Rn,`(r)
2. Draw some plots.

• Put it all together, for Z = 1:

ψ1,0,0 = (πa3
0)

−1/2e−r/a0 groundstate.
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ψ2,0,0 = (32πa3
0)

−1/2(2 − r/a0)e
−r/2a0 ,

ψ2,1,0 = (32πa3
0)

−1/2(r/a0)e
−r/2a0 cos θ

ψ2,1,±1 = ∓(64πa3
0)

−1/2(r/a0)e
−r/2a0 sin θe±iφ.

• Consider 〈rk〉 =
∫ ∞

0
drr2+k(Rn`(r))

2. Get e.g. 〈r〉 = (3n2 − `(` + 1))a0/2Z and

〈r−1〉 = Z/a0n
2. The simplicity of the last expression is related to the Virial theorem,

which says that if V ∼ rk then 〈K.E〉 = k
2 〈V 〉, so E = k+2

2 〈V 〉. Let’s pause to prove the

Virial theorem. Use

d

dt
〈~r · ~p〉 =

1

ih̄
〈[~r · ~p,H]〉 = 2〈T 〉 − ~r · ∇V ,

where the last step follows upon writing everything out and using the commutators of

position and momentum. The time derivative of any operator expectation value will vanish

in any energy eigenstate, so the Virial theorem holds in every energy eigenstate.

Note also that, e.g. for ` = n− 1, the probability density is maximum at solution of
d
dr

(e−2r/na0r2n) = 0, i.e. at r = n2a0. This happens to agree with what Bohr found in the

early era, by using classical mechanics and his (close, but not quite correct) quantization

of L.

• Free particle with angular momentum `:

(

d

dr2
+

2

r

d

dr
−
`(`+ 1)

r2

)

R+ k2R = 0,

where E = h̄2k2/2µ. The solutions are spherical Bessel functions, R(r) = j`(kr), which

behave as j`(kr) ∼ (kr)` for r → 0. (There is another solution, R(r) = n`(kr), called the

spherical Neumann function, but it corresponds to the unacceptable behavior n`(kr) ∼

(kr)−`−1 for r → 0, so we discard it.). So the general solution is

ψ(r, θ, φ) =

∫

dk

∞
∑

`=0

∑̀

m=−`

Ck,`,mj`(kr)Y`,m(θ, φ).

• Free particle in an infinite spherical well. The difference from the above is that

the wavefunction must vanish for r ≥ R, where R is the radius of the well. So require

j`(kn,`R) = 0, which is an equation for the kn,`. The solutions of this equation requires

working out the zeros of the spherical Bessel functions. For each `, there are a discrete

infinite of zeros, labeled by n = 1, 2, 3 . . .. For kR � `, the solutions are approximately

given by kR ≈ (n+ 1
2`)π.
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