6/3/08 Lecture 18 outline

e Last time :
LY, m)y =¥+ 1D)|e,m)  L.|¢,m)=mhll,m)

and

Li|t,m) =h\/l(l +1)—m2Fm|t,m+1).
e The |¢,m) form a complete, orthonormal basis:
(%) L
(', m' 16, m) =600 bmm D > 6m){&,m|=1.
£=0 m=—/¢

e Now consider these kets in position space.
Use spherical coordinates. The |¢, m) states are independent of the radial coordinate,
r; they depend only on 6 and ¢. To see why, write L=7x P in position space, by replacing

p — —ih V. Converting to spherical coordinates, get

L0 Yio a . 0
Lzﬁ—zh% Ly — he (:I:ag—i—zcot@a(b)

and

1 09? 1 0 0
2 32 oA
L L sin’ 6 (9¢>2 sin 6 00 (sm 0 )] )

In position space the L? and L, eigenkets become (0, ¢|¢,m) = Yy (0,¢). Their
definition in terms of their eigenvalue equations, L2Yy (0, ¢) = h2L(€ + 1)Yy, (6, ¢) and
L.Y; m(6,¢) = mhYy,,(0,¢) are well known equations: the Yy ,, (6, ¢) are the Spherical

Harmonics, which always enter in solving problems in spherical coordinates.
They are given by Yy, (6, ¢) ~ P;"(cos 0)e'™?, where P (u) ~ (1—u?)~m/2(L)t=m(1—

u
2)¢ are associated Legendre polynomials. E.g. Yoo~ sin’ 9e®. For m = 0, they are the

ordinary Legendre polynomials, recall Py(u) = 1, Pi(u) = u, Po(u) = 3(3u? — 1), etc.

Draw some plots. E.g. Y, , looks as expected for having maximum L,: it’s rotation is

u

mostly in the z-y plane, so it’s peak is perpendicular to the Z axis. And Y, looks as
expected for having L, = 0: it’s rotation is mostly in a plane including the z axis, so it
looks peaked along the Z axis. Also the £ = 1 is called dipole, as seen from the shape of the
Ly—1 m, and £ = 2 is called quadropole, as seen from e.g the shape of Y5 1, etc. Mention

names for £ =0,1,2,3... are called the s, p, d, f ... orbitals.
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e Aside on rotations in a 2d plane. Replace |6¢) with just |¢) and |[¢m) with |m).
Discuss |¢) in the |#) and the |m) basis, and the Fourier transform between these bases,
using (0|m) = ﬁeim‘z’.

e The |0, ¢) form a complete orthonormal basis:

27 ™
0.610.0) = 25000030 —d) [ do [ sinoanp.0)0.0/= 1.

The |¢, m) similarly form a complete, orthonormal basis:

00 0
(€', m'[l,m) = 6g,0 0 m Z Z |0, m){¢,m| = 1.
=0 m=—¢
Combining these give many standard formulae for the spherical harmonics, e.g. a general

function of # and ¢ can be expanded in terms of the spherical harmonics as:

16, 0, 9| f) = ZZ Bl m) (€, m|f) = ZZYM &) fo.m;
(=0 m=—¢ (=0 m=—¢
where fom = (¢, m|f) = [dQ(C,m|0,$)(0,¢|f) = [ dQYe,m(0,8)" f (0, 0).
e In position space, we replace p? — —h? V2. In spherical coordinates, this becomes
0% 290 L? L?
9 272 _ 32 )
—h*V —h -—— -] = —.
p= (87“2 + ror h2r2) prt r2
So the angular part of the Laplacian in spherical coordinates is just the L? operator. This
connects with how the Yy, (6, ¢) arise in solving differential equations involving V2 in
spherical coordinates (as seen e.g. in evaluating the scalar potential in E& M). Indeed, the

general solution of V2¢ = 0 is
6= D (A’ + 2E)Ye (0, 6).
£=0

(In problems with azimuthal rotational symmetry around an axis, which can be taken to
be Z, there are only the m = 0 terms.) The very particular form of the r dependent terms
above, i.e. r* and 1/r‘*! are special to solutions of V2¢ = 0. For other equations, like the
3d energy eigenvalue equation, the r dependence will be different. But the (6, ¢) depen-
dence of any function can be expressed in terms of the Yy, (0, ¢): that is the statement

that the |¢, m) form a complete basis.



e Decoupled systems, e.g. H = H; + Hy. Energy eigenstates and eigenvalues. Relate

to separation of variables.

e Consider spherically symmetric H = 5-p% + V(r). Since [H, L;] = 0, we can find

2m

simultaneous eigenstates |E, ¢, m) of H, L? and L. Indeed, note that

2 2
_n

= 9 + 22 Vi(r)

where in position space the first terms correspond to

I S
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ﬁ9_>—h2V2:—h2<a—+28 L )—

It is common, also in classical mechanics, to note that this looks like a 1d problem now,
with Ve r(r) = V(r)+ (L?/2pur?). Here p is the mass, not to be mistaken for the m integer

appearing in |/, m). The energy eigenvalue equation then becomes

p2 | R+ 1)
2/ 2ur?

+ V(r)) |E, ¢, m) = E|E,{,m).

In position space, write this equation and discuss solution by separation of variables. We
then have Y ¢ m (1,0, 0) = (1,0, 0|E,{,m) = Ry, (7)Y (60, @), where

(h2 92 20 RH(+1)

_ﬂ(ﬁ -i-;E)-i- -i-V(T)) ng(?“) :En,ngg(T),

2ur?

where n labels the solutions of this equation. The energy is quantized, via n, because
we're considering bound states of the potential. Note that the energy eigenvalues E,, ,
don’t depend on the L, eigenvalue m; this is as expected from the spherical symmetry,

which implies that [H, L1] = 0. The derivative terms become a little simpler if we define

Rn’g(T) = Un,g(T‘)/T:

(_h_Qd_Q Vi) + 00+ 1)R?

2 dr? 22 )U (r) Un (1)



