
6/3/08 Lecture 18 outline

• Last time :

L2|`,m〉 = h̄2`(`+ 1)|`,m〉 Lz|`,m〉 = mh̄|`,m〉

and

L±|`,m〉 = h̄
√
`(`+ 1) −m2 ∓m|`,m± 1〉.

• The |`,m〉 form a complete, orthonormal basis:

〈`′, m′|`,m〉 = δ`,`′δm,m′

∞∑

`=0

∑̀

m=−`

|`,m〉〈`,m| = 1.

• Now consider these kets in position space.

Use spherical coordinates. The |`,m〉 states are independent of the radial coordinate,

r; they depend only on θ and φ. To see why, write ~L = ~x×~p in position space, by replacing

~p→ −ih̄∇. Converting to spherical coordinates, get

Lz → −ih̄
∂

∂φ
L± → h̄e±iφ

(
±
∂

∂θ
+ i cot θ

∂

∂φ

)

and

L2 → −h̄2

[
1

sin2 θ

∂2

∂φ2
+

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)]
.

In position space the L2 and Lz eigenkets become 〈θ, φ|`,m〉 = Y`,m(θ, φ). Their

definition in terms of their eigenvalue equations, L2Y`,m(θ, φ) = h̄2`(` + 1)Y`,m(θ, φ) and

LzY`,m(θ, φ) = mh̄Y`,m(θ, φ) are well known equations: the Y`,m(θ, φ) are the Spherical

Harmonics, which always enter in solving problems in spherical coordinates.

They are given by Y`,m(θ, φ) ∼ Pm
` (cos θ)eimφ, where Pm

` (u) ∼ (1−u2)−m/2( d
du )`−m(1−

u2)` are associated Legendre polynomials. E.g. Y`,` ∼ sin` θei`φ. For m = 0, they are the

ordinary Legendre polynomials, recall P0(u) = 1, P1(u) = u, P2(u) = 1

2
(3u2 − 1), etc.

Draw some plots. E.g. Y`,` looks as expected for having maximum Lz: it’s rotation is

mostly in the x-y plane, so it’s peak is perpendicular to the ẑ axis. And Y`,0 looks as

expected for having Lz = 0: it’s rotation is mostly in a plane including the ẑ axis, so it

looks peaked along the ẑ axis. Also the ` = 1 is called dipole, as seen from the shape of the

L`=1,m, and ` = 2 is called quadropole, as seen from e.g the shape of Y2,1, etc. Mention

names for ` = 0, 1, 2, 3 . . . are called the s, p, d, f . . . orbitals.
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• Aside on rotations in a 2d plane. Replace |θφ〉 with just |φ〉 and |`m〉 with |m〉.

Discuss |ψ〉 in the |θ〉 and the |m〉 basis, and the Fourier transform between these bases,

using 〈θ|m〉 = 1√
pi
eimφ.

• The |θ, φ〉 form a complete orthonormal basis:

〈θ′, φ′|θ, φ〉 =
1

sin θ
δ(θ − θ′)δ(φ− φ′)

∫ 2π

0

dφ

∫ π

0

sin θdθ|θ, φ〉〈θ, φ| = 1.

The |`,m〉 similarly form a complete, orthonormal basis:

〈`′, m′|`,m〉 = δ`,`′δm,m′

∞∑

`=0

∑̀

m=−`

|`,m〉〈`,m| = 1.

Combining these give many standard formulae for the spherical harmonics, e.g. a general

function of θ and φ can be expanded in terms of the spherical harmonics as:

f(θ, φ) ≡ 〈θ, φ|f〉 =

∞∑

`=0

∑̀

m=−`

〈θ, φ|`,m〉〈`,m|f〉 ≡

∞∑

`=0

∑̀

m=−`

Y`,m(θ, φ)f`,m,

where f`,m = 〈`,m|f〉 =
∫
dΩ〈`,m|θ, φ〉〈θ, φ|f〉 =

∫
dΩY`,m(θ, φ)∗f(θ, φ).

• In position space, we replace ~p2 → −h̄2 ∇2. In spherical coordinates, this becomes

~p2 → −h̄2 ∇2 = −h̄2

(
∂2

∂r2
+

2

r

∂

∂r
−

L2

h̄2r2

)
≡ p2

r +
L2

r2
.

So the angular part of the Laplacian in spherical coordinates is just the L2 operator. This

connects with how the Y`,m(θ, φ) arise in solving differential equations involving ∇2 in

spherical coordinates (as seen e.g. in evaluating the scalar potential in E& M). Indeed, the

general solution of ∇2φ = 0 is

φ =

∞∑

`=0

(A`,mr
` +

B`,m

r`+1
)Y`,m(θ, φ).

(In problems with azimuthal rotational symmetry around an axis, which can be taken to

be ẑ, there are only the m = 0 terms.) The very particular form of the r dependent terms

above, i.e. r` and 1/r`+1 are special to solutions of ∇2φ = 0. For other equations, like the

3d energy eigenvalue equation, the r dependence will be different. But the (θ, φ) depen-

dence of any function can be expressed in terms of the Y`,m(θ, φ): that is the statement

that the |`,m〉 form a complete basis.
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• Decoupled systems, e.g. H = H1 +H2. Energy eigenstates and eigenvalues. Relate

to separation of variables.

• Consider spherically symmetric H = 1

2m
~p2 + V (r). Since [H,Li] = 0, we can find

simultaneous eigenstates |E, `,m〉 of H, L2, and Lz. Indeed, note that

H =
p2

r

2µ
+

L2

2µr2
+ V (r)

where in position space the first terms correspond to

~p2 → −h̄2 ∇2 = −h̄2

(
∂2

∂r2
+

2

r

∂

∂r
−

L2

h̄2r2

)
≡ p2

r +
L2

r2
.

It is common, also in classical mechanics, to note that this looks like a 1d problem now,

with Veff (r) = V (r)+(L2/2µr2). Here µ is the mass, not to be mistaken for the m integer

appearing in |`,m〉. The energy eigenvalue equation then becomes

(
p2

r

2µ
+
h̄2`(`+ 1)

2µr2
+ V (r)

)
|E, `,m〉 = E|E, `,m〉.

In position space, write this equation and discuss solution by separation of variables. We

then have ψE,`,m(r, θ, φ) = 〈r, θ, φ|E, `,m〉 = Rn,`(r)Y`,m(θ, φ), where

(
−
h̄2

2µ
(
∂2

∂r2
+

2

r

∂

∂r
) +

h̄2`(`+ 1)

2µr2
+ V (r)

)
Rn,`(r) = En,`Rn,`(r),

where n labels the solutions of this equation. The energy is quantized, via n, because

we’re considering bound states of the potential. Note that the energy eigenvalues En,`

don’t depend on the Lz eigenvalue m; this is as expected from the spherical symmetry,

which implies that [H,L±] = 0. The derivative terms become a little simpler if we define

Rn,`(r) = Un,`(r)/r:

(
−
h̄2

2µ

d2

dr2
+ V (r) +

`(`+ 1)h̄2

2µr2

)
Un,`(r) = En,`Un,`(r).
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