5/22/08 Lecture 15 outline

• Next topic: the harmonic oscillator (SHO), $H = p^2/2m + \frac{1}{2}m\omega^2 x^2$. Appears everywhere in nature, since expanding any potential around a stable equilibrium looks like a SHO to leading order in small fluctuations. Note $\langle H \rangle = |\hat{p}|\psi\rangle|^2/2m + m\omega^2|\hat{x}|\psi\rangle|^2/2 \ge 0$, so all eigenvalues of H must be non-negative. In fact, they must be positive because the only way to get zero would be if both terms above vanish, i.e. if there is a state which is a zero eigenstate of both \hat{x} and \hat{p} . But that is impossible, since $[\hat{x}, \hat{p}] = i\hbar$.

• Use the uncertainty principle to estimate the groundstate energy. In this example, we will compute E_0 , but in more complicated situations it is useful to know how to approximate the answer using the uncertainty principle. $\langle H \rangle \sim (\Delta p)^2/2m + \frac{1}{2}m\omega^2(\Delta x)^2 \sim \hbar^2/2m(\Delta x)^2 + \frac{1}{2}m\omega^2(\Delta x)^2$, and minimize w.r.t. Δx to find the minimum of $\langle H \rangle$, which is the groundstate energy E_0 .

• The differential equation $H\psi_E(x) = E\psi_E(x)$ in position space can be solved, as

$$\psi_n(x) = \left(\frac{m\omega}{\pi\hbar 2^{2n}(n!)^2}\right)^{1/2} e^{-m\omega x^2/2\hbar} H_n[(\frac{m\omega}{\hbar})^{1/2}x]$$

where the H_n are the Hermite polynomials, $H_0 = 1$, $H_1[y] = 2y$, and $H_{n+1}[y] = 2yH_n[y] - 2nH_{n-1}[y]$. The energy eigenvalues are $E_n = (n + \frac{1}{2})\hbar\omega$.

• The harmonic oscillator, using $a = \sqrt{\frac{m\omega}{2\hbar}} \hat{x} + i(2m\omega\hbar)^{-1/2} \hat{p}$ and a^{\dagger} , with $[a, a^{\dagger}] = 1$ and $H_{sho} = \hbar\omega(a^{\dagger}a + \frac{1}{2})$.

- Show $a^{\dagger}a|\lambda\rangle = \lambda|\lambda\rangle$, with $\lambda \ge 0$.
- Show $a|\lambda\rangle = \sqrt{\lambda}|\lambda 1\rangle$, and $a^{\dagger}|\lambda\rangle = \sqrt{\lambda + 1}|\lambda + 1\rangle$. Note that $a^{k}|\lambda\rangle \sim |\lambda k\rangle$.
- Must then have a state annihilated by a, i.e. $\lambda = n$ and $a|0\rangle = 0$.
- Thus $H_{sho}|n\rangle = E_n|n\rangle$ with $E_n = (n + \frac{1}{2})\hbar\omega$. Moreover, $|n\rangle = (n!)^{-1/2}(a^{\dagger})^n|0\rangle$.

• Using $a = \sqrt{\frac{m\omega}{2\hbar}} \hat{x} + i(2m\omega\hbar)^{-1/2}\hat{p}$, convert the above to position space. E.g. get $\psi_0(x) = (m\omega/\pi\hbar)^{1/4} \exp(-m\omega x^2/2\hbar)$ from $\langle x|a|0\rangle = 0$, as a simple differential equation in position space. Can similarly use a and a^{\dagger} in position space to get all the $\psi_n(x)$. Defining $y \equiv \sqrt{m\omega/\hbar}x$, get

$$\psi_n(x) = (2^n n!)^{-1/2} (m\omega/\pi\hbar)^{1/4} (y - \frac{d}{dy})^n e^{-y^2/2}$$

But it's almost always better to work with the basis independent bras, kets, and the operators a and a^{\dagger} .

• The states $|n\rangle$, with n = 0, 1, 2..., form an orthonormal, complete basis:

$$\langle n|m\rangle = \delta_{nm}$$
 and $\sum_{n=0}^{\infty} |n\rangle\langle n| = 1_{op}$.

The annihilation and operators act on them as

$$a|n\rangle = \sqrt{n}|n-1\rangle$$
 $a^{\dagger}|n\rangle = \sqrt{n+1}|n+1\rangle.$

To compute things like $\langle n | \hat{x}^k | m \rangle$ etc, it is useful to express \hat{x} and \hat{p} in terms of a and a^{\dagger} , using

$$\widehat{x} = \sqrt{rac{\hbar}{2m\omega}} \left(a + a^{\dagger}
ight) \qquad \widehat{p} = -i\sqrt{rac{m\omega\hbar}{2}} \left(a - a^{\dagger}
ight).$$

• Example: Evaluate Δx and Δp in the state $|1\rangle$. Use $\Delta x^2 = \langle x^2 \rangle - \langle x \rangle^2$ and $\Delta p^2 = \langle p^2 \rangle - \langle p \rangle^2$. Note that $\langle 1|a^k|1 \rangle = 0$ for all k > 0. Thus $\langle x \rangle = \langle p \rangle = 0$ in the state $|1\rangle$. To compute $\langle x^2 \rangle$, use $\hat{x}^2 = \frac{\hbar}{2m\omega}(a+a^{\dagger})^2$, and note that only the 2nd and 3rd terms in $(a+a^{\dagger})^2 = a^2 + aa^{\dagger} + a^{\dagger}a + a^{\dagger 2}$ give a non-zero contribution when sandwiched between $\langle 1|$ and $|1\rangle$. To compute these, use the above expressions for how a and a^{\dagger} act on $|n\rangle$ to get $a^{\dagger}a|1\rangle = |1\rangle$, and $aa^{\dagger}|1\rangle = 2|1\rangle$, so $\langle x^2 \rangle = \frac{\hbar}{2m\omega}(1+2)$. Likewise, get $\langle p^2 \rangle = -\frac{m\omega\hbar}{2}(-1-2)$. Note that $\Delta x \Delta p = \frac{3}{2}\hbar$, so the uncertainty principle inequality is comfortably satisfied.

• Explain the names, creation and annihilation operators – and phonons.