
5/22/08 Lecture 15 outline

• Next topic: the harmonic oscillator (SHO), H = p2/2m+ 1

2
mω2x2. Appears every-

where in nature, since expanding any potential around a stable equilibrium looks like a

SHO to leading order in small fluctuations. Note 〈H〉 = |p̂|ψ〉|2/2m +mω2|x̂|ψ〉|2/2 ≥ 0,

so all eigenvalues of H must be non-negative. In fact, they must be positive because the

only way to get zero would be if both terms above vanish, i.e. if there is a state which is

a zero eigenstate of both x̂ and p̂. But that is impossible, since [x̂, p̂] = ih̄.

• Use the uncertainty principle to estimate the groundstate energy. In this example,

we will compute E0, but in more complicated situations it is useful to know how to ap-

proximate the answer using the uncertainty principle. 〈H〉 ∼ (∆p)2/2m+ 1

2
mω2(∆x)2 ∼

h̄2/2m(∆x)2 + 1

2
mω2(∆x)2, and minimize w.r.t. ∆x to find the minimum of 〈H〉, which

is the groundstate energy E0.

• The differential equation HψE(x) = EψE(x) in position space can be solved, as

ψn(x) =

(
mω

πh̄22n(n!)2

)1/2

e−mωx2/2h̄Hn[(
mω

h̄
)1/2x]

where the Hn are the Hermite polynomials, H0 = 1, H1[y] = 2y, and Hn+1[y] = 2yHn[y]−
2nHn−1[y]. The energy eigenvalues are En = (n+ 1

2
)h̄ω.

• The harmonic oscillator, using a =
√

mω
2h̄ x̂+ i(2mωh̄)−1/2p̂ and a†, with [a, a†] = 1

and Hsho = h̄ω(a†a+ 1

2
).

• Show a†a|λ〉 = λ|λ〉, with λ ≥ 0.

• Show a|λ〉 =
√
λ|λ− 1〉, and a†|λ〉 =

√
λ+ 1|λ+ 1〉. Note that ak|λ〉 ∼ |λ− k〉.

• Must then have a state annihilated by a, i.e. λ = n and a|0〉 = 0.

• Thus Hsho|n〉 = En|n〉 with En = (n+ 1

2
)h̄ω. Moreover, |n〉 = (n!)−1/2(a†)n|0〉.

• Using a =
√

mω
2h̄ x̂ + i(2mωh̄)−1/2p̂, convert the above to position space. E.g. get

ψ0(x) = (mω/πh̄)1/4 exp(−mωx2/2h̄) from 〈x|a|0〉 = 0, as a simple differential equation in

position space. Can similarly use a and a† in position space to get all the ψn(x). Defining

y ≡
√
mω/h̄x, get

ψn(x) = (2nn!)−1/2(mω/πh̄)1/4(y − d

dy
)ne−y2/2.

But it’s almost always better to work with the basis independent bras, kets, and the

operators a and a†.
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• The states |n〉, with n = 0, 1, 2 . . ., form an orthonormal, complete basis:

〈n|m〉 = δnm and

∞∑

n=0

|n〉〈n| = 1op.

The annihilation and operators act on them as

a|n〉 =
√
n|n− 1〉 a†|n〉 =

√
n+ 1|n+ 1〉.

To compute things like 〈n|x̂k|m〉 etc, it is useful to express x̂ and p̂ in terms of a and a†,

using

x̂ =

√
h̄

2mω

(
a+ a†

)
p̂ = −i

√
mωh̄

2

(
a− a†

)
.

• Example: Evaluate ∆x and ∆p in the state |1〉. Use ∆x2 = 〈x2〉 − 〈x〉2 and

∆p2 = 〈p2〉 − 〈p〉2. Note that 〈1|ak|1〉 = 0 for all k > 0. Thus 〈x〉 = 〈p〉 = 0 in the state

|1〉. To compute 〈x2〉, use x̂2 = h̄
2mω

(a+a†)2, and note that only the 2nd and 3rd terms in

(a+a†)2 = a2 +aa† +a†a+a†2 give a non-zero contribution when sandwiched between 〈1|
and |1〉. To compute these, use the above expressions for how a and a† act on |n〉 to get

a†a|1〉 = |1〉, and aa†|1〉 = 2|1〉, so 〈x2〉 = h̄
2mω

(1+2). Likewise, get 〈p2〉 = −mωh̄
2

(−1−2).

Note that ∆x∆p = 3

2
h̄, so the uncertainty principle inequality is comfortably satisfied.

• Explain the names, creation and annihilation operators – and phonons.
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